F = m • a
What we know:
- Gravity: 9.8 m/s
- Force: 490 N
Equation derived:
m = F/a
m = 490/9.8
= 50 kg
Answer:
1) 341 Hz
Explanation:
When a string vibrates, it can vibrate with different frequencies, corresponding to different modes of oscillations.
The fundamental frequency is the lowest possible frequency at which the string can vibrate: this occurs when the string oscillate in one segment only.
If the string oscillates in n segments, we say that it is the n-th mode of vibration, or n-th harmonic.
The frequency of the n-th harmonic is given by

where
n is the number of the harmonic
is the fundamental frequency
Here we have:
is the frequency of the 3rd harmonic
So the fundamental frequency is

And so, the frequency of the 2nd harmonic is:

<span>A full moon is at its brightest, and here is no disk to be seen. New moons are barely visable.</span>
Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From the question we are told
The amplitude of the lateral force is 
The frequency is 
The mass of the bridge per unit length is 
The length of the central span is 
The oscillation amplitude of the section considered at the time considered is 
The time taken for the undriven oscillation to decay to
of its original value is t = 6T
Generally the mass of the section considered is mathematically represented as

=> 
=> 
Generally the oscillation amplitude of the section after a time period t is mathematically represented as

Here b is the damping constant and the
is the amplitude of the section when it was undriven
So from the question

=> 
=> 
=> 
=> 
Generally the amplitude of the section considered is mathematically represented as

=> 
=> 
=> 
=> 