1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zysi [14]
3 years ago
14

A solid block is attached to a spring scale. When the block is suspended in air, the scale reads 21.2 N; when it is completely i

mmersed in water, the scale reads 18. 2 N. What are the volume and density of the block?
Physics
2 answers:
blsea [12.9K]3 years ago
8 0

Answer:

7066kg/m³

Explanation:

The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:

Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)

= 7066kg/m³

Explanation:

Schach [20]3 years ago
5 0

Answer:

The volume of the block is 306 cm³

The density of the block is 7.07 g/cm³

Explanation:

Given;

weight of block in air, W_a = 21.2 N

Weight of block in water, W_w = 18.2 N

Mass of the block in air;

W_a = mg

21.2 = m x 9.8

m = 21.2 / 9.8

m = 2.163 kg

mass of the block in water;

W_w = mg

18.2 = m x 9.8

m = 18.2 / 9.8

m = 1.857 kg

Apply Archimedes principle

Mass of object in air  - mass of object in water = density of water   x  volume                  of object

2.163 kg - 1.857 kg = 1000 kg/m³ x Volume of block

0.306 kg = 1000 kg/m³ x Volume of block

Volume of the block = \frac{0.306 \ kg}{1000 \ kg/m^3}

Volume of the block = 3.06 x 10⁻⁴ m³

Volume of the block = 306 cm³

Determine the density of the block

Density = \frac{mass}{volume} \\\\Density =\frac{2163 \ g}{306 \ cm^3} \\\\Density = 7.07 \ g/cm^3

You might be interested in
What is the predicted result when two different materials of equal mass absorb the same amount of energy by heat flow?
Ludmilka [50]

The correct is D.

Explanation: The specific heat is defined as heat required to raise the temperature of a unit mass by one degree. Greater the specific heat, more is the heat required to raise the temperature for equal mass. So, the temperature of the material with lowest specific heat will increase the most for the same amount of heat energy.

7 0
3 years ago
The air that flows over the top part of an airplane's wing moves faster than the air that flows across the bottom. This faster m
kaheart [24]
As an airplane moves through the air, its wings cause changes in the speed and pressure of the air moving past them. These changes result in the upward force called lift.

The Bernoulli principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in the pressure exerted by the fluid.

A wing is shaped and tilted so the air moving over it moves faster than the air moving under it. As air speeds up, its pressure goes down. So the faster-moving air above exerts less pressure on the wing than the slower-moving air below. The result is an upward push on the wing—lift!
4 0
3 years ago
Define Plateau period.
Amiraneli [1.4K]
A plateau period refers to a period in life where you are kind of stuck in the middle. There is little growth or decline so you are kind of at a standstill.

please vote my answer brainliest. thanks!
5 0
2 years ago
HELP ME! PLEASE! SOMEONE! THIS QUESTION IS VERY HARD! THERE ARE 3 ANSWERS! HELP ME PLEASE! MAKE SURE TO EXPALIN
blondinia [14]

Answer:

search up the kinetic energy and potential energy etc. then take them and look at the characteristica are they the same? What makes them similar? Why are they different ? How? Then add the chemical nuclear and electrical changes it creates. Now the rest! There you’ve got this! If you need support I’m here! Hope this helped!

Explanation:

6 0
2 years ago
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
2 years ago
Other questions:
  • Which of the following statements about igneous rocks is correct?
    6·1 answer
  • A solid sphere of brass (bulk modulus of 14.0 ✕ 1010 N/m2) with a diameter of 2.20 m is thrown into the ocean. By how much does
    5·1 answer
  • A rubber band is launched horizontally by a student. If the air resistance is negligible, which statement BEST
    11·1 answer
  • Light travels _____________ in a material with a higher index of refraction.
    8·2 answers
  • A ball is thrown vertically upward with a speed of 25.0 m/s from a height of 2.0 m.
    14·1 answer
  • Which element has a full valence shell of electrons
    13·1 answer
  • A force of 120 N is exerted on a 40 kg container which sits on a floor. If the frictional force between floor and container is 8
    6·1 answer
  • Imagine que su primo Morton baja en patineta por una rampa curva en un parque. Tratando a Morton y su patineta como una partícul
    13·1 answer
  • 4. A weightlifter raises a mass mat a constant speed to a height h in time t. Which of the following
    10·1 answer
  • AYUDA!!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!