1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zysi [14]
3 years ago
14

A solid block is attached to a spring scale. When the block is suspended in air, the scale reads 21.2 N; when it is completely i

mmersed in water, the scale reads 18. 2 N. What are the volume and density of the block?
Physics
2 answers:
blsea [12.9K]3 years ago
8 0

Answer:

7066kg/m³

Explanation:

The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:

Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)

= 7066kg/m³

Explanation:

Schach [20]3 years ago
5 0

Answer:

The volume of the block is 306 cm³

The density of the block is 7.07 g/cm³

Explanation:

Given;

weight of block in air, W_a = 21.2 N

Weight of block in water, W_w = 18.2 N

Mass of the block in air;

W_a = mg

21.2 = m x 9.8

m = 21.2 / 9.8

m = 2.163 kg

mass of the block in water;

W_w = mg

18.2 = m x 9.8

m = 18.2 / 9.8

m = 1.857 kg

Apply Archimedes principle

Mass of object in air  - mass of object in water = density of water   x  volume                  of object

2.163 kg - 1.857 kg = 1000 kg/m³ x Volume of block

0.306 kg = 1000 kg/m³ x Volume of block

Volume of the block = \frac{0.306 \ kg}{1000 \ kg/m^3}

Volume of the block = 3.06 x 10⁻⁴ m³

Volume of the block = 306 cm³

Determine the density of the block

Density = \frac{mass}{volume} \\\\Density =\frac{2163 \ g}{306 \ cm^3} \\\\Density = 7.07 \ g/cm^3

You might be interested in
While eating a peanut butter and jelly sandwich peanut butter drips on Dana shirt she tries to remove the peanut butter from her
MakcuM [25]

Answer:

The water does not remove the peanut butter because the peanut butter is thicker substance than the water is, therefore it would not remove immediately.. It could also be because the brown dye or color in the peanut butter color or the peanut butter itself has already gone through her clothing Dana would have to remove it as much as she could with a towel water and some soap then throw it to the washer afterward.

Hope this helps, good luck:)

6 0
3 years ago
A diver leaves the end of a 4.0 m high diving board and strikes the water 1.3s later, 3.0m beyond the end of the board. Consider
shutvik [7]

Answer:

4.0 m/s

Explanation:

The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.

Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

d=v_x t

where here we have

d = 3.0 m is the horizontal distance covered

vx is the horizontal velocity

t = 1.3 s is the duration of the fall

Solving for vx,

v_x = \frac{d}{t}=\frac{3.0 m}{1.3 s}=2.3 m/s

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

y(t) = h + v_y t - \frac{1}{2}gt^2

where

h = 4.0 m is the initial height

vy is the initial vertical velocity

We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

0=h+v_y t - \frac{1}{2}gt^2\\v_y = \frac{0.5gt^2-h}{t}=\frac{0.5(9.8 m/s^2)(1.3 s)^2-4.0 m}{1.3 s}=3.3 m/s

So now we can find the magnitude of the initial velocity:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(2.3 m/s)^2+(3.3 m/s)^2}=4.0 m/s

4 0
4 years ago
Taigas, tundra and tropical rainforests share what common abiotic component?
e-lub [12.9K]

Answer:

water

Explanation:

hope this helps

6 0
3 years ago
What are 16 stages of a stars life
Alla [95]
Https://www.slideshare.net/mobile/jan_parker/life-cycle-of-stars-3196871
the answer to your question!
8 0
3 years ago
A particle's position is given by z(t) = −(6.50 m/s2)t2k for t ≥ 0. (Express your answer in vector form.) a. Find the particle's
blondinia [14]

Answer:

a) z'(t) =v(t) = -13t

Now we can replace the velocity for t=1.75 s

v(1.75s) = -13*1.75 =-22.75 \frac{m}{s}

For t = 3.0 s we have:

v(3.0s) = -13*3.0 =-39 \frac{m}{s}

b) v_{avg}= \frac{z_f - z_i}{t_f -t_i}

And we can find the positions for the two times required like this:

z_f = z(3.0s) = -(6.5 \frac{m}{s^2}) (3.0s)^2=-58.5m

z_i = z(1.75s) = -(6.5 \frac{m}{s^2}) (1.75s)^2=-19.906m

And now we can replace and we got:

V_{avg}= \frac{-58.5 -(-19.906) m}{3-1.75 s}= -30.875 \frac{m}{s}

Explanation:

The particle position is given by:

z(t) = -(6.5 \frac{m}{s^2}) t^2, t\geq 0

Part a

In order to find the velocity we need to take the first derivate for the position function like this:

z'(t) =v(t) = -13t

Now we can replace the velocity for t=1.75 s

v(1.75s) = -13*1.75 =-22.75 \frac{m}{s}

For t = 3.0 s we have:

v(3.0s) = -13*3.0 =-39 \frac{m}{s}

Part b

For this case we can find the average velocity with the following formula:

v_{avg}= \frac{z_f - z_i}{t_f -t_i}

And we can find the positions for the two times required like this:

z_f = z(3.0s) = -(6.5 \frac{m}{s^2}) (3.0s)^2=-58.5m

z_i = z(1.75s) = -(6.5 \frac{m}{s^2}) (1.75s)^2=-19.906m

And now we can replace and we got:

V_{avg}= \frac{-58.5 -(-19.906) m}{3-1.75 s}= -30.875 \frac{m}{s}

8 0
3 years ago
Other questions:
  • A toy rocket is fired vertically into the air from the ground at an initial velocity of 80 feet per second. Find the time it wil
    12·1 answer
  • A house is generally warmer upstair that it is downstairs due to
    5·2 answers
  • There are Z protons in the nucleus of an atom, where Z is the atomic number of the element. An α particle carries a charge of +2
    13·1 answer
  • (II) A 0.280-kg croquet ball makes an elastic head-on collision with a second ball initially at rest. The second ball moves off
    11·1 answer
  • What acceleration is imparted to a football when the player kicked it with a force of 25 N? mass of football=0.40 kg
    11·1 answer
  • A lizard accelerates from 2 m/s to 10 m/s in 4 seconds. what is the lizard average acceleration
    5·1 answer
  • When a front wheel drops off the roadway you should?
    8·1 answer
  • Consider the circuit. Switches are added at points A, B, C, and D. All the switches are closed EXCEPT the switch at position D,
    14·2 answers
  • 67 points plus brainlest if done correctly.I will report you if you answer 3 or less of the questions, also must post all the an
    11·1 answer
  • Calculate Neptune's mass given the acceleration due to gravity at the north pole is 11.529 m/s2 and the radius of Neptune at the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!