Answer:
i = 0.5 A
Explanation:
As we know that magnetic flux is given as

here we know that
N = number of turns
B = magnetic field
A = area of the loop
now we know that rate of change in magnetic flux will induce EMF in the coil
so we have

now plug in all values to find induced EMF


now by ohm's law we have


Answer:
The current drawn by Horace’s reading glasses is 0.8 A.
Explanation:
Given that,
Resistance of each bulb, R = 2 ohms
Voltage of the system, V = 3.2 volts
These two bulbs are connected in series. The equivalent resistance will be 2 ohms +2 ohms = 4 ohms
Let I is the current drawn by Horace’s reading glasses. Using Ohm's law to find it such that :

So, the current drawn by Horace’s reading glasses is 0.8 A.
Answer:
they share electrons between them.
Explanation:
taking the test rn lol i think its right
Answer:
Option C. 5,000 kg m/s
Explanation:
<u>Linear Momentum on a System of Particles
</u>
Is defined as the sum of the momenta of each particles in a determined moment. The individual momentum is the product of the mass of the particle by its speed
P=mv
The question refers to an 100 kg object traveling at 50 m/s who collides with another object of 50 kg object initially at rest. We compute the moments of each object


The sum of the momenta of both objects prior to the collision is


Explanation:
an object's gravitational potential energy Eg is m×g×h where:
m=mass
g=9.8m/s²
h=height relative to the closest object below it (because it cannot potentially fall through it
so Eg = 15×9.8×5=735J