Answer:
The speed of the 8-ball is 2.125 m/s after the collision.
Explanation:
<u>Law Of Conservation Of Linear Momentum</u>
The total momentum of a system of masses is conserved unless an external force is applied. The momentum of a body with mass m and velocity v is calculated as follows:
P=mv
If we have a system of masses, then the total momentum is the sum of all the individual momentums:
When a collision occurs, the velocities change to v' and the final momentum is:
In a system of two masses, the law of conservation of linear momentum is simplified to:
The m1=0.16 Kg 8-ball is initially at rest v1=0. It is hit by an m2=0.17 Kg cue ball that was moving at v2=2 m/s.
After the collision, the cue ball comes to rest v2'=0. It's required to find the final speed v1' after the collision.
The above equation is solved for v1':
The speed of the 8-ball is 2.125 m/s after the collision.
Answer:
20m
Explanation:
The two tens cancel each other out, as they are in opposite directions. Now we only care about the 20m, which if we have no 10's, will end up 20m away.
Answer:
0.031 W
Explanation:
The power used is equal to the rate of work done:
where
P is the power
W is the work done
t is the time taken to do the work W
In this problem, we have:
W = 900 J is the work done by the motor
t = 8 h is the time taken
We have to convert the time into SI units; keeping in mind that
1 hour = 3600 s
We have
And therefore, the power used is
Easy ! EVERY element and every compound melts, then boils and becomes a gas, if you heat it to a high enough temperature. That includes iron, gold, water, salt, glass, almost any substance.