<span>the answer would be 3,959 miles</span>
2.1) (i) W = mg downwards
(ii) N = R = Normal Reaction from the ground upwards
(iii) Fe = Force of engine towards the right
(iv) f = friction towards the left
(v) ma = Constant acceleration towards right.
2.2.1)
v = 25 m/s
u = 0 m/s
∆v = v - u = (25 - 0) m/s = 25 m/s
x = X
∆t = 50 s

a = 0.5 m/s².
2.2.2)
F = ma = 900 kg × 0.5 m/s² = 450 N.
2.2.3)


2.3)
Fe = f + ma
Fe - f = ma
For velocity to be constant,
a should be 0, or, a = 0,
Fe = f = 270 N
2.4.1)
v = 0
u = 25 m/s
a = -0.5 m/s²
v = u + at
t = -u/a = -(25)/(-0.5) = 50 s.
2.4.2)
x = -625/(2×(-0.5)) = 625 m.
<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>
Answer: The conductivity of water depends on the concentration of dissolved ions in solution. ... This is because the Sodium Chloride salt dissociates into ions. Hence sea water is about a million times more conductive than fresh water.