1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anuta_ua [19.1K]
3 years ago
15

2x+5y=50 Solve for x and then solve for y

Mathematics
1 answer:
astra-53 [7]3 years ago
5 0

Answer:

x = 25  -  5y/2

y =  10  -  2x/5

You might be interested in
2 Points<br> Which of the following is the coefficient in the algebraic expression 2x +y?
zubka84 [21]

Answer:2

Step-by-step explanation:

6 0
3 years ago
Two true or false :)
asambeis [7]
1. false because they have the same slope and y-intercept so they have infinite number of solutions
2. true
4 0
3 years ago
How do you title someone as a Brainliest on this app?
ipn [44]

Answer:

Find the answer that is provided to you. On the bottom of the comment, there is an option in gold text that allows you to pick brainliest. You can try it on this comment.

8 0
3 years ago
Read 2 more answers
A bag of sugar contains 420g. A
faltersainse [42]

Answer:

63g extra

Step-by-step explanation:

420 x 0.15 =63 g

6 0
3 years ago
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • what is the difference in there elevation an airplane flies at an altitude of 25,000 feet a submarine dives to a depth of 600 fe
    9·1 answer
  • She breaks apart 12 into 10+2 then she writes 5×(10+2) as 5× 10)
    11·1 answer
  • Select the equation of the line parallel to 2x + 6y = -4 the equation and that passes through the point (3, -3) .
    9·1 answer
  • If 11 twelfth graders were surveyed to see who owned a tablet and 6 of them owned one what is the percentage of twelfth graders
    12·1 answer
  • Water weighs about 8.34 pounds per gallon
    9·1 answer
  • The area of the composite figure is ______ square millimeters.
    5·1 answer
  • Will the product of 9/8 and6 be greater or less than 6
    8·2 answers
  • I have 12 coins x of them are R5 coins and the rest are R1 coins. An expression in the in terms of x for the number of R1 coins
    6·1 answer
  • The areaot a square is 36 cm? What<br> is the side length, s?
    12·1 answer
  • The diagonal of a square is 8 cm.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!