Answer:2
Step-by-step explanation:
1. false because they have the same slope and y-intercept so they have infinite number of solutions
2. true
Answer:
Find the answer that is provided to you. On the bottom of the comment, there is an option in gold text that allows you to pick brainliest. You can try it on this comment.
Answer:
63g extra
Step-by-step explanation:
420 x 0.15 =63 g
Answer:
![\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B3cos%282x%29%20-2%283x%20%2B%201%29%5Bsin%282x%29%20%2B%20cos%282x%29%5D%7D%7Be%5E%7B2x%7D%7D)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Factoring
- Exponential Rule [Dividing]:

- Exponential Rule [Powering]:

<u>Calculus</u>
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Quotient Rule: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Trig Derivative: ![\displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%28u%29%5D%20%3D%20-u%27sin%28u%29)
eˣ Derivative: ![\displaystyle \frac{d}{dx}[e^u] = u'e^u](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Eu%5D%20%3D%20u%27e%5Eu)
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Differentiate</u>
- [Derivative] Quotient Rule:
![\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20%2B%201%29cos%282x%29%5De%5E%7B2x%7D%20-%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%283x%20%2B%201%29cos%282x%29%7D%7B%28e%5E%7B2x%7D%29%5E2%7D)
- [Derivative] [Fraction - Numerator] eˣ derivative:
![\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20%2B%201%29cos%282x%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7B%28e%5E%7B2x%7D%29%5E2%7D)
- [Derivative] [Fraction - Denominator] Exponential Rule - Powering:
![\displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7Bd%7D%7Bdx%7D%5B%283x%20%2B%201%29cos%282x%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] Product Rule:
![\displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Cfrac%7Bd%7D%7Bdx%7D%5B3x%20%2B%201%5Dcos%282x%29%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%282x%29%5D%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:
]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%281%20%5Ccdot%203x%5E%7B1%20-%201%7D%29cos%282x%29%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%282x%29%5D%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:
]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B3cos%282x%29%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bcos%282x%29%5D%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:
![\displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B3cos%282x%29%20-2sin%282x%29%283x%20%2B%201%29%5De%5E%7B2x%7D%20-%202e%5E%7B2x%7D%283x%20%2B%201%29cos%282x%29%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction - Numerator] Factor:
![\displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Be%5E%7B2x%7D%5B%283cos%282x%29%20-2sin%282x%29%283x%20%2B%201%29%29%20-%202%283x%20%2B%201%29cos%282x%29%5D%7D%7Be%5E%7B4x%7D%7D)
- [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:

- [Derivative] [Fraction - Numerator] Factor:
![\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B3cos%282x%29%20-2%283x%20%2B%201%29%5Bsin%282x%29%20%2B%20cos%282x%29%5D%7D%7Be%5E%7B2x%7D%7D)
Topic: AP Calculus AB/BC
Unit: Derivatives
Book: College Calculus 10e