Answer:
3.87 x 10^24
Explanation:
Simply multiply the moles by avogadros number
6.42 moles of H2O x 6.022 x 10^23 molecules/1 mole of H2O = 3.87 x 10^24 molecules of H2O
Answer:
900 J/mol
Explanation:
Data provided:
Enthalpy of the pure liquid at 75° C = 100 J/mol
Enthalpy of the pure vapor at 75° C = 1000 J/mol
Now,
the heat of vaporization is the the change in enthalpy from the liquid state to the vapor stage.
Thus, mathematically,
The heat of vaporization at 75° C
= Enthalpy of the pure vapor at 75° C - Enthalpy of the pure liquid at 75° C
on substituting the values, we get
The heat of vaporization at 75° C = 1000 J/mol - 100 J/mol
or
The heat of vaporization at 75° C = 900 J/mol
Answer is: because they were using simple chemical reactions to transform elements, but that is possible only with nuclear reactions, which in that time were not possible to conduct.
Nuclear reactions can produce new elements, because number of protons and neutrons is changed, lead and gold have different atomic and mass numbers.
The electrons of an atom participates in a chemical reaction, chemical reactions involve the rearrangement of electrons, because there is transfer, loss, gain and sharing of electrons in chemical reactions, new elements are not formed.
A rock is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition and the way in which it is formed
Answer:
The specific heat of iron is 0.45 J/g.°C
Explanation:
The amount of heat absorbed by the metal is given by:
heat = m x Sh x ΔT
From the data, we have:
heat = 180.8 J
mass = m = 22.44 g
ΔT = Final temperature - Initial temperature = 39.0°C - 21.1 °C = 17.9°C
Thus, we calculate the specific heat of iron (Sh) as follows:
Sh = heat/(m x ΔT) = (180.8 J)/(22.44 g x 17.9°C) = 0.45 J/g.°C