Answer:
d) The dilution equation works because the number of moles remains the same.
Explanation:
Let’s say that you have 1 mol of a solute in I L of solution. The concentration is 1 mol·L⁻¹. and <em>M</em>₁<em>V</em>₁ = 1 mol.
Now, you dilute the solution to a volume of 2 L. You still have 1 mol of solute, but in 2 L of solution. The new concentration is 0.5 mol·L⁻¹.
The volume has doubled, but the volume has halved, and <em>M</em>₂<em>V</em>₂ = 1 mol.
b) <em>Wrong</em>. The molar concentration changes on dilution.
c) <em>Wrong</em>. The volume changes on dilution.
a) <em>Wrong</em>, although technically correct, because if the moles don’t change, the mass doesn’t change either. However, the formula <em>M</em>₁<em>V</em>₁ has units mol·L⁻¹ × L = mol. Thus, in the formula, it is moles that are constant.
Answer:
less, decreases
Explanation:
When the pressure of an atmosphere occurs because of the force exerted so at the time of the higher altitudes, the air mass i.e. above the earth should be less as the air is attracted towards surface of an earth because of the gravity and air contains the mass that shows near the surface area so automatically the air density reduced due to which the mass also decreased
The molarity of the diluted solution is 0.33 M
From the question given above, the following data were obtained:
Molarity of stock solution (M₁) = 0. 5 M
Volume of stock solution (V₁) = 100 mL
Volume of diluted solution (V₂) = 100 + 50 = 150 mL
<h3>Molarity of diluted solution (M₂) =? </h3>
The molarity of the diluted solution can be obtained by using the dilution formula as illustrated below:
<h3>M₁V₁ = M₂V₂</h3>
0.5 × 100 = M₂ × 150
50 = M₂ × 150
Divide both side by 150
M₂ = 50 / 150
<h3>M₂ = 0.33 M</h3>
Therefore, the molarity of the diluted solution is 0.33 M
Learn more: brainly.com/question/24625656
TRUE. (Lorenzo Romano Amadeo Carlo Avogadro) Ideal Gas Law that defined as one in which all collisions between atoms or molecules are perfectly elastic in which there are no intermolecular attractive forces. In such a gas, all the internal energy is the form of kinetic energy and any change in internal energy is accompanied by a change in temperature. That characterized by three state variables: absolute pressure (P) = 1 atm, volume (V) = 22.4 L and absolute temperature (T) = 273 K.