If Ka for HCN is 6. 2×10^−10 at 25 °C, then the value of Kb for cn− at 25 °C is 1.6 × 10^(-5).
<h3>What is base dissociation constant? </h3><h3 />
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 6.2× 10^(-10)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{6.2×10^(-10) }
= 1.6× 10^(-5)
Thus, the value of base dissociation constant at 25°C is 1.6 × 10^(-5).
learn more about base dissociation constant :
brainly.com/question/9234362
#SPJ4
Answer:
4.43 g
Explanation:
The reaction between sodium chloride and flourine gas is given as;
NaCl + F2 --> NaF + Cl2
From the stochiometry of the equation;
1 mol of NaCl reacts eith 1 mol of F2 to form 1 mol of NaF and Cl2
Mass of 1 mol of F2 = 38g
Mass of 1 mol of sodium flouride, NaF = 42g
This means 38g of flourine reacted with NaCl to form 42g of NaF
xg of F2 would form 4.9g of NaF
38 = 42
x = 4.9
x = 4.9 * 38 / 42
x = 4.43 g
Answer:
= 9.872002 × 10^6
Explanation:
Move the decimal point in your number until there is only one non-zero digit to the left of the decimal point. The resulting decimal number is a.
Count how many places you moved the decimal point. This number is b.
If you moved the decimal to the left b is positive.
If you moved the decimal to the right b is negative.
If you did not need to move the decimal b = 0.
Write your scientific notation number as a x 10^b and read it as "a times 10 to the power of b."
Remove trailing 0's only if they were originally to the left of the decimal point.
Assuming that the reactants are:
(NH4)2SO4 (aq) + Ba(NO3)2 (aq)
and the products are:
BaSO4 (s) + 2NH4NO3 (aq),
then you will have to determine which product is insoluble. You should have access to solubility rules to help you determine this.
According to the solubility rules, the following elements are considered insoluble when paired with SO4:
Sr^2+, Ba^2+, Pb^2+, Ag^2+, and Ca^2+
Therefore, the precipitate will be BaSO4 (s).