The amount in grams of Al₂O₃ produced is approximately 6.80 g.
Aluminium reacts completely with oxygen(air) to produce Al₂O₃. The reaction can be represented with a chemical equation as follows:
AL + O₂ → Al₂O₃
Let's balance it
4AL + 3O₂ → 2Al₂O₃
4 moles of Aluminium reacts with 3 moles of Oxygen molecules to produce 2 moles of Aluminium oxide. Therefore,
Since, aluminium reacts completely, it is the limiting reagent in the reaction. Therefore,
Atomic mass of AL = 27 g
Molar mass of Al₂O₃ = 101.96 g/mol
4(27 g) of AL gives 2(101.96 g) of Al₂O₃
3.6 g of AL will give ?
cross multiply
mass of Al₂O₃ produced = 3.6 × 203.92 / 108 = 734.112 / 108 = 6.797
mass of Al₂O₃ produced = 6.80 g.
read more: brainly.com/question/23982245?referrer=searchResults
Answer:
ΔpH = 0.20
Explanation:
The buffer of HCO₃⁻ + CO₃²⁻ has a pka of 10.2
HCO₃⁻ ⇄ H⁺ + CO₃²⁻
There are 0.479moles of NaHCO₃ and 0.342moles of Na₂CO₃.
Using Henderson-Hasselbalch formula:
pH = pka + log [Base] / [Acid]
pH = 10.2 + log 0.342mol / 0.479mol
<em>pH = 10.05</em>
NaOH reacts with HCO₃⁻ producing CO₃²⁻, thus:
NaOH + HCO₃⁻ → CO₃²⁻ + H₂O + Na⁺
0.091 moles of NaOH produce the same moles of CO₃²⁻ and consume HCO₃⁻. Moles of these species are:
CO₃²⁻: 0.342mol + 0.091mol: 0.433mol
HCO₃⁻: 0.479mol - 0.091 mol: 0.388mol
Using Henderson-Hasselbalch formula:
pH = pka + log [Base] / [Acid]
pH = 10.2 + log 0.433mol / 0.388mol
pH = 10.25
That means change of pH, ΔpH is:
ΔpH = 10.25 - 10.05 = <em>0.20</em>
<em />
I hope it helps!
Answer:
Explanation:
Stoichiometry is based on the <u>conservation of mass</u>.
Answer:
The mass of the products left in the test tube will be less than that of the original reactants.
Explanation
The equation for the reaction is
Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)
1.0 3.0 3.9 0.1
Assume you started with 1.0 g of Mg.
It will react with 3.0 g of HCl to form 3.9 g of MgCl2 and 0.1 g of H2
.
Mass of reactants = mass of products
1.0 g + 3.0 g = 3.9 g + 0.1 g
4.0 g = 4.0 g
The Law of Conservation of Mass is obeyed.
However, your test tube and its contents will weigh 0.1 g less than it did before the reaction.
Does that contradict the Law of Conservation of Mass? It does not.
One of the products was the gas, hydrogen, and it escaped from the test tube. You weren't measuring all the products, so test tube and its contents weighed less than before.