Answer:
a) 
b) 
d) 
d) 
Explanation:
From the question we are told that:
Moles of N2 
Atmospheric pressure 
Temperature 

Initial heat 
a)
Generally the equation for change in temperature is mathematically given by

Where




b)
Generally the equation for ideal gas is mathematically given by

For v double


Therefore



Total Work-done 



c)
Generally the equation for amount of heat added is mathematically given by



d)
Generally the equation for change in internal energy of the gas is mathematically given by



Answer:
54 grams ammonium chloride and 40 grams sodium hydroxide
Explanation:
A buffer is a solution that contains either a weak acid and its salt or a weak base and its salt, the solution is resistant to changes in pH. This means that, a buffer is an aqueous solution of either a weak acid and its conjugate base or a weak base and its conjugate acid.
A Buffer is used to maintain a stable pH in a solution, buffers can neutralize small quantities of additional acid of base. For any buffer solution, there is always a working pH range and a set amount of acid or base that can be neutralized before the pH will change. The amount of acid or base that can be added to a buffer before changing its pH is called its buffer capacity.
A good buffer mixture is supposed to have about equal concentrations of its both components. It is a rule of thumb therefore, that a buffer solution has generally lost its usefulness when one component of the buffer pair is less than about 10% of the other component.
The implication of this is that the ammonium chloride and sodium hydroxide should be of approximately the same concentration. If the masses are dissolved as shown in the answer, then we will have 1molL-1 of each component of the buffer in accordance with the rule of thumb stated above.
Hello!
The electron configuration for helium is 1s2
Volume is 60 and the area is 94 have a great day
The reaction between hydrogen and oxygen to form water is given as:

The balanced reaction is:

According to the balanced reaction,
4 g of hydrogen (
) reacts with 32 g of oxygen (
).
So, oxygen reacted with 29.4 g of hydrogen is:

Hence, the mass of oxygen that is reacted with 29.4 g of hydrogen is 235.2 g.