When the product formation is decreased if a substance B is added to an enzyme reaction and more substrate being added would not increase the amount of produce formed, then we assume that substance b could be a noncompetitive inhibitor. This type of inhibitor would be one that would bind to the enzyme with or without the presence of a substrate in different sites at the same time. It would change the conformation of the enzyme and also the active sites. As a result, the substrate would not be able to bind to the enzyme more effectively than the usual. The overall efficiency would decrease.
Answer:
pKa of the acid HA with given equilibrium concentrations is 6.8
Explanation:
The dissolution reaction is:
HA ⇔ H⁺ + A⁻
So at equilibrium, Ka is calculated as below
Ka = [H⁺] x [A⁻] / [HA] = 2.00 x 10⁻⁴ x 2.00 x 10⁻⁴ / 0.260
= 15.38 x 10⁻⁸
Hence, by definition,
pKa = -log(Ka) = - log(15.38 x 10⁻⁸) = 6.813
Answer:
Hereditary information in the cell would be destroyed.
Explanation:
The nucleus can be defined as a membrane bound organelle that is found in eukaryotic cells. The main function of the nucleus is that it controls all activities that is related to the growth of the cell and also reproduction. The nucleus contains the cell hereditary information(DNA).
The nucleus is the most important organelle in the cell, It can sometimes be referred to as the brain of the cell. Therefore any health related condition that affects the nucleus would directly destroy all hereditary information that is stored in the cell.
If the change in Gibbs free energy for a process is positive, the corresponding change in entropy for the universe will be positive.
<h3>What is Gibbs free energy?</h3>
This is defined as the energy used by a substance involved in a chemical reaction.
The Gibbs free energy and entropy has a direct relationship which is why a positive gibbs free energy will result in a corresponding positive entropy.
Read more about Gibbs free energy here brainly.com/question/9179942
Answer:
The first ionization energy is the energy it takes to remove an electron from a neutral atom.
hope it is helpful :)