A white insoluble solid would appeaer
Answer:
189.2 KJ
Explanation:
Data Given
wavelength of the light = 632.8 nm
Convert nm to m
1 nm = 1 x 10⁻⁹
632.8 nm = 632.8 x 1 x 10⁻⁹ = 6.328 x 10⁻⁷m
Energy of 1 mole of photon = ?
Solution
Formula used
E = hc/λ
where
E = energy of photon
h = Planck's Constant
Planck's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light
speed of light = 3 × 10⁸ ms⁻¹
λ = wavelength of light
Put values in above equation
E = hc/λ
E = 6.626 x 10⁻³⁴ Js ( 3 × 10⁸ ms⁻¹ / 6.328 x 10⁻⁷m)
E = 6.626 x 10⁻³⁴ Js (4.741 x 10¹⁴s⁻¹)
E = 3.141 x 10⁻¹⁹J
3.141 x 10⁻¹⁹J is energy for one photon
Now we have to find energy of 1 mole of photon
As we know that
1 mole consists of 6.022 x10²³ numbers of photons
So,
Energy for one mole photons = 3.141 x 10⁻¹⁹J x 6.022 x10²³
Energy for one mole photons = 1.89 x 10⁵ J
Now convert J to KJ
1000 J = 1 KJ
1.89 x 10⁵ J = 1.89 x 10⁵ /1000 = 189.2 KJ
So,
energy of one mole of photons = 189.2 KJ
You must know the concentration of the acetic acid. Suppose the concentration is 0.1 M. The solution is as follows:
CH₃COOH → CH₃COO⁻ + H⁺
I 0.1 0 0
C -x +x +x
E 0.1 - x x x
Ka = (x)(x)/(0.1 - x)
1.8×10⁻⁵ = x²/(0.1 - x)
Solving for x,
x = 1.333×10⁻³ = H⁺
pH = -log[H⁺] = -log(1.333×10⁻³)
pH = 2.88
Answer:
homogeneous and heterogeneous mixtures
M(C2H2O)= 12.0*2 +1.0*2 +16.0 = 42 g/mol is a molar mass for empirical formula.
120.6g/mol/42g/mol ≈ 3
So, empirical formula should be increased 3 times,
and molecular formula is C6H6O3.
Answer is D.