Answer:
i would say B but i dont know
Step-by-step explanation:
AL=5ah!!!!!!!!!! Hope it helps
Green's theorem says the circulation of
along the rectangle's border
is equal to the integral of the curl of
over the rectangle's interior
.
Given
, its curl is the determinant
![\det\begin{bmatrix}\frac\partial{\partial x}&\frac\partial{\partial y}\\2xy&0\end{bmatrix}=\dfrac{\partial(0)}{\partial x}-\dfrac{\partial(2xy)}{\partial y}=-2x](https://tex.z-dn.net/?f=%5Cdet%5Cbegin%7Bbmatrix%7D%5Cfrac%5Cpartial%7B%5Cpartial%20x%7D%26%5Cfrac%5Cpartial%7B%5Cpartial%20y%7D%5C%5C2xy%260%5Cend%7Bbmatrix%7D%3D%5Cdfrac%7B%5Cpartial%280%29%7D%7B%5Cpartial%20x%7D-%5Cdfrac%7B%5Cpartial%282xy%29%7D%7B%5Cpartial%20y%7D%3D-2x)
So we have
![\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_D-2x\,\mathrm dx\,\mathrm dy=-2\int_0^3\int_0^8x\,\mathrm dx\,\mathrm dy=\boxed{-192}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C%5Cvec%20F%5Ccdot%5Cmathrm%20d%5Cvec%20r%3D%5Ciint_D-2x%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D-2%5Cint_0%5E3%5Cint_0%5E8x%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D%5Cboxed%7B-192%7D)