Answer:
3n^2+9+5n^4+55n
Step-by-step explanation:
Steps
$\left(3n^2+9+5n^4-3n\right)+\left(-9n\left(-7\right)-5n\right)$
$\mathrm{Remove\:parentheses}:\quad\left(a\right)=a,\:-\left(-a\right)=a$
$=3n^2+9+5n^4-3n+9n\cdot\:7-5n$
$\mathrm{Add\:similar\:elements:}\:-3n-5n=-8n$
$=3n^2+9+5n^4-8n+9\cdot\:7n$
$\mathrm{Multiply\:the\:numbers:}\:9\cdot\:7=63$
$=3n^2+9+5n^4-8n+63n$
$\mathrm{Add\:similar\:elements:}\:-8n+63n=55n$
$=3n^2+9+5n^4+55n$
a.
h = 2c - 3
b.
3h + 1.5c = 201
c.
We have a system of equations from part a and b.
h = 2c - 3 (equation 1)
3h + 1.5c = 201 (equation 2)
We use substitution method to solve this system.
Substitute equation 1 in equation 2 to get
3h + 1.5c = 201
>> 3(2c - 3) + 1.5c = 201
>> 6c - 9 + 1.5c = 201
>> 7.5c = 201 + 9
>> 7.5c = 210
>> c = 210 / 7.5
>> c = 28
Plug this value back in equation 1 to get
h = 2c - 3
>> h = 2(28) - 3 = 56 - 3 = 53
So, c = 28 and h = 53 implies that <u>28 corndogs</u> and 53 hotdogs were sold.
The answer is -.25 4(-.25) = -1 +6 = 5! Hope this helps!!! :)