Answer:
c. 298 K
Explanation:
Nernst equation is an equation used in electrochemistry that relates the reduction potential of a reaction with the standard potential, temperature and concentrations of the reactants in that are been reducted and oxidized. The formula is:
E = E° - RT / nF ln [Red] / [Ox]
<em>Where R is gas constant (8.314J/molK), T is absolute temperature (In Kelvin), n are moles of electrons and F is faraday constant (K/Volt*mol)</em>
<em />
In electrochemistry, standard temperature is taken as 298K. That means by assuming standard temperature we can substitute T as:
<h3>c. 298 K</h3>
The compound's molecular formula is C6H6
Iodine electron configuration is:
1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 5S^2 4d^10 5P^5
when Krypton is the noble gas in the row above iodine in the periodic table,
we can change 1S^2 2S^2 2P^6 3S^2 3P^6 4S^2 3d^10 4P^6 by the symbol
[Kr] of Krypton.
So we can write the electron configuration of Iodine:
[Kr] 5S^2 4d^10 5P^5
Answer:
Tetrahedral electron geometry and trigonal pyramidal molecular geometry.
Explanation:
The Lewis structure is shown in Figure 1.
The central N atom has three bonding pairs and one lone pair, for <em>four electron groups</em>.
VSEPR theory predicts a tetrahedral electron geometry with bond angles of 109.5°.
We do not count the lone pair in determining the molecular shape.
The molecular geometry is trigonal pyramidal (see Figure 2).
Molar Volume is required to solve this problem. As we know that "1 mole of any gas at standard temperature and pressure occupies 22.4 L of volume". SO using this concept, we can calculate the volume of ammonia formed by reacting 54.1 L of Hydrogen gas as follow,