Answer:
The limiting reactant is H₂
Explanation:
The reaction of hydrogen (H₂) and carbon monoxide (CO) to produce methanol (CH₃OH) is the following:
2H₂(g) + CO(g) → CH₃OH(g)
From the balanced chemical equation, we can see that 1 mol of CO reacts wIth 2 moles of H₂. So, the stoichiometric ratio is:
2 mol H₂/1 mol CO = 2.0
We have 500 mol of CO and 750 mol of H₂, so we calculate the ratio to establish a comparison:
750 mol H₂/500 mol CO = 1.5
Since 2.0 > 1.5, we have fewer moles of H₂ than are needed to completely react with 500 moles of CO. In fact, we need 1000 moles of H₂ and we have 750 moles. So, the limiting reactant is H₂.
Answer:
1) harm life forms that rely on carbonate-based shells and skeletons, 2) harm organisms sensitive to acidity
Explanation:
Explanation:When the stove turns on the skillet will become very hot because of the conduction of heat transferring from the stove to the skillet.
Answer: Th enthalpy of combustion for the given reaction is 594.244 kJ/mol
Explanation: Enthalpy of combustion is defined as the decomposition of a substance in the presence of oxygen gas.
W are given a chemical reaction:



To calculate the enthalpy change, we use the formula:

This is the amount of energy released when 0.1326 grams of sample was burned.
So, energy released when 1 gram of sample was burned is = 
Energy 1 mole of magnesium is being combusted, so to calculate the energy released when 1 mole of magnesium ( that is 24 g/mol of magnesium) is being combusted will be:

The letter (d.) strong base or acid would be the most appropriate answer to the question above. An indicator is a strong base or acid. Indicators are strong base and acid because through this you can determine if a compound is acid or base with its color.