5 / 3/4 = 5/1 * 4/3 = 20/3 = 6 2/3
6 2/3 * 93 = 20/3 * 93/1 = 1860/3 = 620 calories
I don't know what method is referred to in "section 4.3", but I'll suppose it's reduction of order and use that to find the exact solution. Take

, so that

and we're left with the ODE linear in

:

Now suppose

has a power series expansion



Then the ODE can be written as


![\displaystyle\sum_{n\ge2}\bigg[n(n-1)a_n-(n-1)a_{n-1}\bigg]x^{n-2}=0](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum_%7Bn%5Cge2%7D%5Cbigg%5Bn%28n-1%29a_n-%28n-1%29a_%7Bn-1%7D%5Cbigg%5Dx%5E%7Bn-2%7D%3D0)
All the coefficients of the series vanish, and setting

in the power series forms for

and

tell us that

and

, so we get the recurrence

We can solve explicitly for

quite easily:

and so on. Continuing in this way we end up with

so that the solution to the ODE is

We also require the solution to satisfy

, which we can do easily by adding and subtracting a constant as needed:
Answer:
i don't know exactly.
Step-by-step explanation:
but the might be an angle tool online.
Answer:
10000000000000000000000000000000000000000
Step-by-step explanation:
If you are doing 10 to the power of something just write 1 and then the amount of zeros as the power.
So for this question I wrote 1 and the 40 zeros.
Answer:
Step-by-step explanation:
<h2>a and b</h2>