Answer: Option (b) is the correct answer.
Explanation:
In liquid state, particles do have kinetic energy that helps in partially overcoming the intermolecular forces between the molecules. But still the particles are close together and they are able to slide past each other.
So, when we apply pressure on a liquid then its molecules partially gets compressed.
On the other hand, molecules of a solid are held together by strong intermolecular forces of attraction. Hence, they have definite shape and volume. As a result, solids do not get compressed.
In gases and plasma state of matter, molecules are gar away from each other. So, they are able to get completely compressed when a pressure is applied.
Thus, we can conclude that liquid is the state of matter which consists of particles that can be partially compressed.
Answer:
There is 5.56 g of gold for every 1 g of chlorine
Explanation:
The question is to determine the simplest mass ratio of gold to Chlorine in the compound.
Since the mass of gold in the compound compared to chlorine is 15.39 g for every 2.77 g, the mass of gold per gram of chlorine is given as:
15.39 / 2.77 = 5.56 g of gold to two decimal places
<em>Therefore, for every 5.56 g of gold, there is 1 g of chlorine.</em>
<em>Note : The ratio in which different elements combine by mass to form a compound is given by the law of constant composition which states that, "all pure samples of a particular chemical compound contain the same elements combined in the same proportion by mass.</em>
Answer:
spandex and cotton is a natural mix for sporta clothing and undergarments to improve stretching properties and prevent odour
It would be 1A bc then the +1 charge will cancel out chlorine’s -1 charge
Answer:
Number of moles of methane form = 2.3 mol
Explanation:
Given data:
Number of moles of Hydrogen = 4.6 mol
Number of moles of methane form = ?
Solution:
Chemical equation:
C + 2H₂ → CH₄
Now we will compare the moles of methane with hydrogen from balance chemical equation.
H₂ : CH₄
2 : 1
4.6 : 1/2×4.6 = 2.3 mol
Form 3.6 moles of hydrogen 2.3 moles of methane can be formed.