You need to use the ideal gas law (PV=nRT) and solve for n. ((3.50atm•10.0L)/(0.0821(L•atm/mol•K)•304K) = n = 1.40 moles. 1 mole of Cl2 = 70.9 gm/mole. The mass would be 99.43 gm
Scientists can bombard atomic nuclei with high-energy particles such as protons, neutrons, or alpha particles. Scientists synthesize a transuranium element by the artificial transmutation of a lighter element. ... It involves nuclear change, not chemical change. NOTE nuclear decay is a transmutation that happens naturally.
An Arrhenius acid by definition dissociates in water to form H3O+ (or H+) ions while an arrhenius base dissociates in water to form OH- ions.
NH4+(aq) can be categorised as an arrhenius acid since it releases H3O+ ions in aqueous media
NH4+(aq) + H2O (aq) ↔ NH3 (aq) + H3O+(aq)
Answer:
0.26×10²³ molecules
Explanation:
Given data:
Volume of gas = 1.264 L
Temperature = 168°C
Pressure = 946.6 torr
Number of molecules of gas = ?
Solution:
Temperature = 168°C (168+273= 441 K)
Pressure = 946.6 torr (946.6/760 = 1.25 atm)
Now we will determine the number of moles.
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.25 atm ×1.264 L / 0.0821 atm.L/ mol.K ×441 K
n = 1.58 /36.21 /mol
n = 0.044 mol
Now we will calculate the number of molecules by using Avogadro number.
1 mol = 6.022×10²³ molecules
0.044 mol × 6.022×10²³ molecules/ 1mol
0.26×10²³ molecules