Answer: (0, -7)
Step-by-step explanation:
If the values of a function f(x) approach the value L as x approaches c, we say that f(x) has the limit L as x approaches c, and we write
In simpler terms, as x approaches c, the value of f(x) approaches L.
Answer:
inches
Step-by-step explanation:
The "to" unit goes in the numerator. (The "from" unit goes in the denominator.) Since we're converting to inches, the numerator of the conversion factor has units of inches.
_____
9 yd = 9 yd × (36 in)/(1 yd) = 324 in
so, we know both the rectangular prism and the cylinder got filled up to a certain height each, the same height say "h" cm.
we know the combined volume of both is 80 cm³, so let's get the volume of each, sum them up to get 80 then.
![\bf \stackrel{\stackrel{\textit{volume of a}}{\textit{rectangular prism}}}{V=Lwh}~~ \begin{cases} L=length\\ w=width\\ h=height\\[-0.5em] \hrulefill\\ L=4\\ w=2\\ \end{cases}~\hspace{2em}\stackrel{\textit{volume of a cylinder}}{V=\pi r^2 h}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%7D%7D%7B%5Ctextit%7Brectangular%20prism%7D%7D%7D%7BV%3DLwh%7D~~%20%5Cbegin%7Bcases%7D%20L%3Dlength%5C%5C%20w%3Dwidth%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20L%3D4%5C%5C%20w%3D2%5C%5C%20%5Cend%7Bcases%7D~%5Chspace%7B2em%7D%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%7D%7BV%3D%5Cpi%20r%5E2%20h%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
