1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
15

_____ can be defined as the rate at which work is done or the amount of work done based on a period of time. (2 Points) voltage

power resistant current
Engineering
1 answer:
Ymorist [56]3 years ago
4 0

Answer: Power

Explanation:

The rate at which work is done or the amount of work done based on a period of time is referred to as power.

Power can also be defined as the amount of energy that is being transferred per unit time. The unit of power is one joule per second or simply called the watt.

You might be interested in
What’s the answer to this I don’t understand
kari74 [83]

Answer:

Electrons are the negatively charged particles of atom. Electrons are extremely small compared to all of the other parts of the atom. So, the negative green particles of this atom are the electrons.

Explanation:

Hope it helps:)

3 0
2 years ago
Identify the different engineering activities/steps in the engineering design process for each steps,summarize in 1–3 sentences
Gennadij [26K]

Answer:

Hi how are you doing today Jasmine

5 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
Which of the following describes a tropical grassland environment?
SOVA2 [1]
It would be the last one I’m pretty sure
7 0
3 years ago
Read 2 more answers
Dndbgddbdbhfdhdhdhhfhffhfhhddhhdhdhdhdhd​
german
Jsjfjwjcjdjcns cusifnsnvnjs eifjwjfooaogkskgke skcjsjfjsj skfejkfks kdkdnwjns
5 0
3 years ago
Read 2 more answers
Other questions:
  • Two parallel Rivers (A and B) are separated by confined and unconfined aquifer estimate the RATE of seepage of river A to River
    15·1 answer
  • Using the data given below, calculate the drop in the temperature of molten aluminum as it flows in a 15 cm long round channel o
    9·1 answer
  • Steam enters an adiabatic turbine at 8 MPa and 500°C at a rate of 18 kg/s, and exits at 0.2 MPa and 300°C. Determine the rate of
    7·1 answer
  • Microchips found inside most electronic devices today are examples of what material A. Polymers B. Alloys C. Composites D. None
    10·2 answers
  • Which of the following is a advantage of a chain and sprocket over a pulley and belt system?
    7·1 answer
  • A gas within a piston–cylinder assembly undergoes an isother- mal process at 400 K during which the change in entropy is −0.3 kJ
    10·1 answer
  • In this image if the ground were removed from the neutral wire what would the voltage to ground be?
    6·1 answer
  • How to draw the output voltage waveform rectifier
    8·1 answer
  • WHICH OF THIS PLS FAST!!!
    5·1 answer
  • What are the well-known effects of electricity​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!