1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wlad13 [49]
2 years ago
8

The A/C compressor will not engage when the A/C is turned on. The static refrigerant pressure is 75 psi and the outside temperat

ure is 72 degrees F. Technician A says that a poor connection at the pressure cycling switch could be the cause. Technician B says that a faulty A/C clutch coil could be the cause. Who is correct
Engineering
1 answer:
VikaD [51]2 years ago
3 0

In the case above,  poor connection at the pressure cycling switch  and also a faulty A/C clutch coil could be the cause.

<h3>What is likely the reason when an A/C compressor will not engage if A/C is turned on?</h3>

The cause that hinders the A/C Compressor from engaging are:

  • Due to low pressure lockout.
  • Due to a poor ground
  • Due to bad clutch coil.
  • Dur to an opening in the wire that links to the clutch coil.
  • Due to a blown fuse.

Note that the pressure switches is known to be one that control the on/off function of any kind of AC compressor and as such, if there is switch failure, it can hinder the AC compressor from functioning at all.

Therefore, technician A and B are correct.

Learn more about refrigerant pressure from

brainly.com/question/10054719

#SPJ1

You might be interested in
Steam enters a turbine steadily at 7 MPa and 600°C with a velocity of 60 m/s and leaves at 25 kPa with a quality of 95 percent.
Rufina [12.5K]

Answer:

a) \dot m = 16.168\,\frac{kg}{s}, b) v_{out} = 680.590\,\frac{m}{s}, c) \dot W_{out} = 18276.307\,kW

Explanation:

A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:

Mass Balance

\frac{v_{in}\cdot A_{in}}{\nu_{in}} - \frac{v_{out}\cdot A_{out}}{\nu_{out}} = 0

Energy Balance

-q_{loss} - w_{out} + h_{in} - h_{out} = 0

Specific volumes and enthalpies are obtained from property tables for steam:

Inlet (Superheated Steam)

\nu_{in} = 0.055665\,\frac{m^{3}}{kg}

h_{in} = 3650.6\,\frac{kJ}{kg}

Outlet (Liquid-Vapor Mix)

\nu_{out} = 5.89328\,\frac{m^{3}}{kg}

h_{out} = 2500.2\,\frac{kJ}{kg}

a) The mass flow rate of the steam is:

\dot m = \frac{v_{in}\cdot A_{in}}{\nu_{in}}

\dot m = \frac{\left(60\,\frac{m}{s} \right)\cdot (0.015\,m^{2})}{0.055665\,\frac{m^{3}}{kg} }

\dot m = 16.168\,\frac{kg}{s}

b) The exit velocity of steam is:

\dot m = \frac{v_{out}\cdot A_{out}}{\nu_{out}}

v_{out} = \frac{\dot m \cdot \nu_{out}}{A_{out}}

v_{out} = \frac{\left(16.168\,\frac{kg}{s} \right)\cdot \left(5.89328\,\frac{m^{3}}{kg} \right)}{0.14\,m^{2}}

v_{out} = 680.590\,\frac{m}{s}

c) The power output of the steam turbine is:

\dot W_{out} = \dot m \cdot (-q_{loss} + h_{in}-h_{out})

\dot W_{out} = \left(16.168\,\frac{kg}{s} \right)\cdot \left(-20\,\frac{kJ}{kg} + 3650.6\,\frac{kJ}{kg} - 2500.2\,\frac{kJ}{kg}\right)

\dot W_{out} = 18276.307\,kW

6 0
3 years ago
1. An air standard cycle is executed within a closed piston-cylinder system and consists of three processes as follows:1-2 = con
QveST [7]

Answer:

Explanation: Here it is: 67 Hope that helps! :)

5 0
3 years ago
Water is pumped steadily through a 0.10-m diameter pipe from one closed pressurized tank to another tank. The pump adds 4.0 kW o
jekas [21]

Complete Question

Complete Question is attached below.

Answer:

V'=5m/s

Explanation:

From the question we are told that:

Diameter d=0.10m

Power P=4.0kW

Head loss \mu=10m

 \frac{P_1}{\rho g}+\frac{V_1^2}{2g}+Z_1+H_m=\frac{P_2}{\rho g}+\frac{V_2^2}{2g}+Z_2+\mu

 \frac{300*10^3}{\rho g}+35+Hm=\frac{500*10^3}{\rho g}+15+10

 H_m=(\frac{200*10^3}{1000*9.8}-10)

 H_m=10.39m

Generally the equation for Power is mathematically given by

 P=\rho gQH_m

Therefore

 Q=\frac{P}{\rho g H_m}

 Q=\frac{4*10^4}{1000*9.81*10.9}

 Q=0.03935m^3/sec

Since

 Q=AV'

Where

 A=\pi r^2\\A=3.142 (0.05)^2

 A=7.85*10^{-3}

Therefore

 V'=\frac{0.03935m^3/sec}{7.85*10^{-3}}

 V'=5m/s

5 0
3 years ago
How would you describe what would happen to methane if the primary bonds were to break?
erastova [34]

Answer:

All the bonds in methane (CH4CH4) are equivalent, and all have the same dissociation energy.

The product of the dissociation is methyl radical (CH3CH3). All the bonds in methyl radical are equivalent, and all have the same dissociation energy.

The product of that dissociation is methylene (CH2CH2). All the bonds in methylene are equivalent, and all have the same dissociation energy.

The product of that dissociation is methyne (CHCH) .

The C-H bonds in methane do not have the same dissociation energy as C-H bonds in methyl radical, which in turn do not have the same dissociation energy as the C-H bonds in methylene, which are again different from the C-H bond in methyne.

If (by some miracle) you were able to get all four bonds in methane to dissociate absolutely simultaneously, they would all show the same dissociation energy… but that energy, per bond broken, would be different than the energy required to break just one C-H bond in methane, because the products are different.

(In this case, it’s CH4→C+4HCH4→C+4H versus CH4→CH3+HCH4→CH3+H.)

To alter hydrocarbons you add enough energy to break a C-H bond. Why does only one bond break? What concentrates the energy on one C-H bond?

the weakest CH bond is the one that breaks. in plain alkanes it has to do with the molecular orbital interactions between neighboring carbon atoms. look at propane for example. the middle carbon has two C-C bonds, and each of those C-C bonds is strengthened by slight electron delocalization from the C-H bonds overlapping with the antibonding orbitals of the adjacent carbons.

since the C-H bonds on the middle carbon donate electron density to both of its neighbors, those two are weakest.

one of them will break preferentially.

which one actually breaks depends on the reaction conditions (kinetics). frankly it's whichever one ramdomly approaches a nucleophile first. when the nucleophile pulls of one of the H's, the other C-H bonds start to share (delocalize) the negative charge across the whole molecule. so while the middle C feels the majority of the negative charge character, the other two C's take on a fair amount as well...

by the way, alkanes don't really like to break and form anions like that.

a better example would be something like isopropyl iodide, where the C-I bond breaks and the I carries away the electron pair, forming a carbocation (also not particularly stable, but more so than the carbanion).

7 0
3 years ago
Identify three material considerations an engineer would need to consider when working on a design process.
Anika [276]

Answer:

Three material considerations are;

1. Identify and appraise the attainment of the goal of the with the design specification

2. Ascertain the required load the product being designed will experience and the suitability of the design specification to that load

3. Review the producibility of the design to ensure that it can be produced with the available technology

Explanation:

1. The appraisal of the design includes the consideration of the factors of the design and the building of reliability and efficiency into the design from the beginning

2. Ascertain if the product will require toughness, elasticity, and if will be subject to sudden or repeated loading conditions

3. Ensure that the design can be readily produced with the accessible manufacturing equipment during the conceptualization stage of the design.

4 0
3 years ago
Other questions:
  • What are the disadvantages of using 3D ink jet printing ??
    8·1 answer
  • Part of the basic procedures is the vehicle check. What does that mean?
    7·1 answer
  • Input signal to a controller is​
    9·1 answer
  • Outline the structure of an input-output model (including assumptions about supply and demand). What is an inverse matrix? Why i
    14·2 answers
  • For the system form of the basic laws, the momentum of a system can change as a result of: a. pressure acting on the system. b.
    14·2 answers
  • In a paragraph of 125 words, explain at least three ways that engineers explore possible solutions in their
    8·1 answer
  • Filler metals range in diameter from 1/16" to 3/8"*<br> O<br> true<br> O False
    15·1 answer
  • How much memory can a 32 -bit processor support ?
    13·1 answer
  • Limestone scrubbing is used to remove SO2 in a flue gas desulfurization (FGD) system. Relevant reactions are given below. A lime
    8·1 answer
  • What speeds did john j montgomerys gliders reach
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!