Answer:
Pre-Flush:
It is also known as In-line Equalization. In this stage of flow equalization, all the flow passes through the equalization basin. It helps in reduction of fluctuation in pollutants concentration and flow rate and helps to control short term surges with the use of basin.
Post-Flush:
Another name for this stage is Off-line Equalization. In this stage, only overflow above a predetermined standard is diverted into the basin. It helps in reducing the fluctuations in loading by a considerable amount and helps to reduce the pumping requirement. It is basically used to capture "first flush" from combined collection systems.
Answer:
A) 
B)
Explanation:
Given data:
P-1 = 100 lbf/in^2
degree f


effeciency = 80%
from steady flow enerfy equation

where h1 and h2 are inlet and exit enthalpy
for P1 = 100 lbf/in^2 and T1 = 500 degree F


for P1 = 40 lbf/in^2


exit enthalapy h_2


from above equation
[1 Btu/lbm = 25037 ft^2/s^2]

b) amount of entropy


at ![h_2 = 1197.77 Btu/lbm [\tex] and [tex]P_2 = 40 lbf/in^2](https://tex.z-dn.net/?f=h_2%20%3D%201197.77%20Btu%2Flbm%20%5B%5Ctex%5D%20%20and%20%5Btex%5DP_2%20%3D%2040%20lbf%2Fin%5E2)


Answer:
(b) Constant (minimum) volume
Explanation:
In the idealized Otto cycle there are 4 process that are
- Reversible adiabatic compression
- Addition of heat at constant volume
- Reversible adiabatic expansion
- Rejection of constant volume
So from above discussion we can see that heat is added when there is constant (minimum) volume which is given in option (b) so option (b) will be the correct answer