no it is more than 4x it is 6x
SR because any point on a perpendicular bisecting line is equidistant from the ends of the bisected segment.
Answer:
The circulation of the field f(x) over curve C is Zero
Step-by-step explanation:
The function
and curve C is ellipse of equation

Theory: Stokes Theorem is given by:

Where, Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Also, f(x) = (F1,F2,F3)

Using Stokes Theorem,
Surface is given by g(x) = 
Therefore, tex]\hat{N} = grad(g(x))[/tex]


Now, 
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\x^{2}&4x&z^{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5Cx%5E%7B2%7D%264x%26z%5E%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = (0,0,4)
Putting all values in Stokes Theorem,



I=0
Thus, The circulation of the field f(x) over curve C is Zero
80.8, 40.4, 20.2, 10.1 (the numbers are going in half.)
1024, 512, 256, 128. (also going in half.)
Answer:

Step-by-step explanation:
![x^2 > 100\\\\\mathrm{For\:}u^n\:>\:a\\\mathrm{,\:if\:}n\:\mathrm{is\:even}\mathrm{\:then\:}u\:\:\sqrt[n]{a}\\\\x\sqrt{100}\\\\\sqrt{100}=10\\\\x10](https://tex.z-dn.net/?f=x%5E2%20%3E%20100%5C%5C%5C%5C%5Cmathrm%7BFor%5C%3A%7Du%5En%5C%3A%3E%5C%3Aa%5C%5C%5Cmathrm%7B%2C%5C%3Aif%5C%3A%7Dn%5C%3A%5Cmathrm%7Bis%5C%3Aeven%7D%5Cmathrm%7B%5C%3Athen%5C%3A%7Du%5C%3A%3C%5C%3A-%5Csqrt%5Bn%5D%7Ba%7D%5C%3Aor%5C%3Au%5C%3A%3E%5C%3A%5Csqrt%5Bn%5D%7Ba%7D%5C%5C%5C%5Cx%3C-%5Csqrt%7B100%7D%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Ax%3E%5Csqrt%7B100%7D%5C%5C%5C%5C%5Csqrt%7B100%7D%3D10%5C%5C%5C%5Cx%3C-10%5Cquad%20%5Cmathrm%7Bor%7D%5Cquad%20%5C%3Ax%3E10)