AE = AC = 4
m<CAB = 60 (equilateral triangle)
m<CAE = 90 (square)
m<BAE = 150 (= 60 + 90)
Triangle BAE is isosceles since AB = AE;
therefore, m<AEB = m<ABE.
m<AEB + m<ABE + m<BAE = 180
m<AEB + m< ABE + 150 = 180
m<AEB + m<AEB = 30
m<AEB = 15
In triangle ABE, we know AE = AB = 4;
we also know m<BAE = 150, and m<AEB = 15.
We can use the law of sines to find BE.
BE/(sin 150) = 4/(sin 15)
BE = (4 sin 150)/(sin 15)
BE = 7.727
Answer:
3/4 x 2/2= 6/8
Step-by-step explanation:
multiply 3/4 x 2/2 to equal = 6/8
E.5 hours
All you have to do is subtract 85 from 510 till you have 0
the correct question is
The midpoint of kl is m(–8, 1). one endpoint is k(–6, 5). find the coordinates of the other endpoint l.
we know that
the formula of midpoint is
Xm=(x1+x2)/2----> 2*Xm=x1+x2------> x2=2*Xm-x1
Ym=(y1+y2)/2----> 2*Ym=y1+y2------> y2=2*Ym-y1
let
(x1,y1)-------> (–6, 5).
(Xm,Ym)-----> (-8,1)
find (x2,y2)
x2=2*Xm-x1-----> 2*(-8)-(-6)----> -10
y2=2*Ym-y1----> 2*(1)-5-----> -3
the point l is (-10,-3)
Answer:
22x + 24
Step-by-step explanation:
7x+9+7x+9+4x+3+4x+3
11x + 18 + 11x + 6
Mark brainliest please!