Answer:
thanks for free points be brave go lkong never quit!
Step-by-step explanation:
<em><u>HEYA</u></em><em><u> </u></em><em><u>MATE</u></em><em><u> </u></em>
<em><u>YOU</u></em><em><u>R</u></em><em><u> </u></em><em><u>ANSWE</u></em><em><u>R</u></em><em><u> </u></em><em><u>IS</u></em><em><u> </u></em><em><u>A.</u></em><em><u>3</u></em><em><u>/</u></em><em><u>1</u></em><em><u>0</u></em><em><u>,</u></em><em><u>3</u></em><em><u>0</u></em><em><u>%</u></em>
<em><u>BEC</u></em><em><u>AUSE</u></em><em><u> </u></em><em><u>SHADED</u></em><em><u> </u></em><em><u>SQ</u></em><em><u>UAR</u></em><em><u>ES</u></em><em><u> </u></em><em><u>ARE</u></em><em><u> </u></em><em><u>6</u></em><em><u> </u></em>
<em><u>AND</u></em><em><u> </u></em><em><u>TOTAL</u></em><em><u> </u></em><em><u>SQU</u></em><em><u>AR</u></em><em><u>ES</u></em><em><u> ARE</u></em><em><u> </u></em><em><u>2</u></em><em><u>0</u></em>
<em><u>THAN</u></em><em><u> </u></em><em><u>APPL</u></em><em><u>Y</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>FORMULA</u></em><em><u> </u></em><em><u>OF</u></em><em><u> </u></em><em><u>PERC</u></em><em><u>ENTAGE</u></em><em><u>.</u></em>
- <em><u>=</u></em><em><u>></u></em><em><u>GIVEN</u></em><em><u> </u></em><em><u>NUM</u></em><em><u>BER</u></em><em><u>/</u></em><em><u>TOTAL</u></em><em><u> </u></em><em><u>NUMB</u></em><em><u>ER</u></em><em><u>×</u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em>
- <em><u>6</u></em><em><u>/</u></em><em><u>2</u></em><em><u>0</u></em><em><u>×</u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em>
<em><u>THAN WE GET</u></em>
<em><u>3</u></em><em><u>0</u></em><em><u>%</u></em>
<em><u>THANK</u></em><em><u> </u></em><em><u>YOU</u></em><em><u> </u></em>
Answer:
f(x) = (3x -2)(2x +1)
Step-by-step explanation:
The procedure for factoring expression of the form ...
ax² +bx +c
is to look for factors of a·c that have a sum of b.
The product a·c is 6·(-2) = -12. You are looking for factors that have a sum of b = -1. From your familiarity with multiplication tables, you know ...
-12 = 1(-12) = 2(-6) = 3(-4)
The sums of the factor pairs in this list are -11, -4, -1. So, the last pair of factors, {3, -4} is the one we're looking for.
__
At this point, there are several ways to proceed. Perhaps the simplest is to rewrite the linear term as the sum of terms involving these factors:
-x = 3x -4x
f(x) = 6x² +3x -4x -2
Now, the expression can be factored 2 terms at a time:
f(x) = (6x² +3x) -(4x +2) . . . . . pay attention to signs
f(x) = 3x(2x +1) -2(2x +1) . . . . factor each pair
f(x) = (3x -2)(2x +1) . . . . . . . . factor out the common factor of (2x+1)
Answer:
<u>y = w and ΔABC ~ ΔCDE</u>
Step-by-step explanation:
Given sin(y°) = cos(x°)
So, ∠y + ∠x = 90° ⇒(1)
And as shown at the graph:
ΔABC is aright triangle at B
So, ∠y + ∠z = 90° ⇒(2)
From (1) and (2)
<u>∴ ∠x = ∠z </u>
ΔCDE is aright triangle at D
So, ∠x + ∠w = 90° ⇒(3)
From (1) and (3)
<u>∴ ∠y = ∠w</u>
So, for the triangles ΔABC and ΔCDE
- ∠A = ∠C ⇒ proved by ∠y = ∠w
- ∠B = ∠D ⇒ Given ∠B and ∠D are right angles.
- ∠C = ∠E ⇒ proved by ∠x = ∠z
So, from the previous ΔABC ~ ΔCDE by AAA postulate.
So, the answer is <u>y = w and ΔABC ~ ΔCDE</u>
Answer: the are no values of y that make it true
Step-by-step explanation: no solution