<span>A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 115 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam.
1)What is the force the left support exerts on the beam?
2)What is the force the right support exerts on the beam?
3)How much extra mass could the gymnast hold before the beam begins to tip?
Now the gymnast (not holding any additional mass) walks directly above the right support.
4)What is the force the left support exerts on the beam?
5)What is the force the right support exerts on the beam?</span>
Answer:
V = 11.83 m/s
Explanation:
Given the following data;
Mass = 2000 kg
Force = 10000N
Distance = 14 m
To find the final velocity of the car;
First of all, we would determine the acceleration of the car;
Acceleration = force/mass
Acceleration = 10000/2000
Acceleration = 5 m/s²
Next, we would use the third equation of motion to find the final velocity;
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
V² = 0² + 2*5*14
V² = 0 + 140
V = √140
V = 11.83 m/s
Answer:
Explanation:
V = J/C
V = 20/1
= 20 v
Option A is the correct answer
Answer:
Number of turns of wire(N) = 3,036 turns (Approx)
Explanation:
Given:
Diameter = 13 Cm
emf = 5.6 v
Note:
The given question is incomplete, unknown information is as follow.
Magnetic field increases = 0.25 T in 1.8 (Second)
Find:
Number of turns of wire(N)
Computation:
radius (r) = 13 / 2 = 6.5 cm = 0.065 m
Area = πr²
Area = (22/7)(0.065)(0.065)
Area = 0.013278 m²
So,
emf = (N)(A)(dB / dt)
5.6 = (N)(0.013278)(0.25 / 1.8)
5.6 = (N)(0.013278)(0.1389)
N = 3,036.35899
Number of turns of wire(N) = 3,036 turns (Approx)