These are the characteristics that apply:
- In a solution taste sour: which is consequence of the H+ concentration.
- Corrode metals: the H+ ion reacts with the metal producing a salt and water
-Produce hydronium ion in solution: as per the Bronsted - Lowry definition an acid is a substance that donates a proton, H+. This proton will react with H2O to form H3O+ (hydronium), as per this scheme:
HA + H2O --> A(-) + H3O(+)
Answer: Jupiter's mass
Explanation:
From Kepler's third law:

where T is the orbital period of a satellite, a is the average distance of the satellite from the Planet, M is the mass of the planet, G is the gravitational constant.
If the average distance of one of Jupiter's moons to Jupiter and its orbital period around Jupiter is given then mass of the Jupiter can be found:

Given parameters:
Initial velocity of Coin = 0m/s
Time taken before coin hits ground = 5.7s
Unknown:
Final velocity of the coin = ?
Velocity is displacement with time. To solve this problem, we have to apply one of the equations of motion.
The fitting one of them here is shown below;
V = U + gt
where;
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
t is the time taken
Here we use positive value of acceleration due to gravity because the coin is falling with the effect of acceleration and not against it.
Now input the parameters and solve;
V = 0 + 9.81 x 5.7
V = 55.917m/s
Therefore, the final velocity is 55.917m/s.
Reflection from such a rough surface is called diffuse reflection and appears matte