Explanation:
u = 0m/s
v = 30m/s
a = 2m/s²
Using Kinematics, we have v = u + at.
Therefore t = (v - u) / a
= (30 - 0) / (2) = 15 seconds. (B)
Answer:
the other colours get absorbed by the paper
15 you get 3 Multiply it by 5 and get 15
Answer:
The correct option is;
B. Object X travels at -2 m/s and object Y travels at 4 m/s after the spring is no longer compressed
Explanation:
The given parameters are;
The mass of object Y = M
The mass of object X = 2·M
The initial velocity of object X and object Y = 0 m/s
Let A represent the velocity of object X after the spring is released and B represent the velocity of object Y after the spring is released, therefore, by the principle of the conservation of linear momentum, we have;
(M + 2·M) × 0 = M × B + 2·M × A
∴ (M + 2·M) × 0 = 0 = M × B + 2·M × A
M × B = -2·M × A
∴ B = -2·A
Therefore, the velocity of the object Y = -2 × The velocity of the object X
Whereby the velocity of the object X = -2, The velocity of the object Y = -2 × -2 = 4
Which gives, object X travels at -2 m/s and object Y travels at 4 m/s after the spring is no longer compressed.
Answer:
% of water boils away= 12.64 %
Explanation:
given,
volume of block = 50 cm³ removed from temperature of furnace = 800°C
mass of water = 200 mL = 200 g
temperature of water = 20° C
the density of iron = 7.874 g/cm³ ,
so the mass of iron(m₁) = density × volume = 7.874 × 50 g = 393.7 g
the specific heat of iron C₁ = 0.450 J/g⁰C
the specific heat of water Cw= 4.18 J/g⁰C
latent heat of vaporization of water is L_v = 2260 k J/kg = 2260 J/g
loss of heat from iron is equal to the gain of heat for the water


m₂ = 25.28 g
25.28 water will be vaporized
% of water boils away =
% of water boils away= 12.64 %