Answer:
<span>D) combine light nuclei
</span>
Explanation:
Fission and fusion both deal with the alteration of atoms in order to produce energy. However, they are actually opposite processes, this is because:
1- Fission occurs when an atomic nucleus is split/divided into two forming two atoms
2- Fusion occurs when two light atomic nuclei combine together to form a single atom.
Hope this helps :)
Answer:
2.3 x 10-23 g.
Explanation:
The mass of a single atom is the mass number, 14, is the mass in grams of one mole of carbon.
One mole of Nitrogen atom is 6.022 x 1023 atoms (Avogadro's number). This can then used to convert a nitogen atom to grams by the ratio:
mass of 1 atom / 1 atom = mass of a mole of atoms / 6.022 x 10^23 atoms.
mass of 1 atom = mass of a mole of atoms / 6.022 x 1023
mass of 1 N atom = 14 / 6.022 x 10^23 N atoms
mass of 1 N atom = 2.325 x 10^-23 g
The mass of a single Nitrogen atom is 2.325 x 10-23 g.
1. Potential Energy is stored energy a object has when it's not moving.
2. Potential Energy is it's highest on the first stage because as you see the roller coaster is bout to go down the tract which is going to higher the kinetic energy and lower the potential energy.
3. Kinetic Energy is the amount of energy a object has when it's in motion or moving.
4. Kinetic Energy is it's highest in the third stage after it's gone down the tract and potential energy fully decreased and it's at zero.
Remember that potential energy is stored energy so when a object is not moving in this case the roller coaster isn't moving on the first stage when its bout to go down the roller coaster. Kinetic energy is the amount of energy a object has when it's in motion so in this case the third stage would have the highest example of Kinetic energy because it's fully in motion and has no potential energy.
<span>134 ml
First, let's determine how many moles of oxygen we have.
Atomic weight oxygen = 15.999
Molar mass O2 = 2*15.999 = 31.998 g/mol
We have 3 drops at 0.050 ml each for a total volume of 3*0.050ml = 0.150 ml
Since the density is 1.149 g/mol, we have 1.149 g/ml * 0.150 ml = 0.17235 g of O2
Divide the number of grams by the molar mass to get the number of moles
0.17235 g / 31.998 g/mol = 0.005386274 mol
Now we can use the ideal gas law. The equation
PV = nRT
where
P = pressure (1.0 atm)
V = volume
n = number of moles (0.005386274 mol)
R = ideal gas constant (0.082057338 L*atm/(K*mol) )
T = Absolute temperature ( 30 + 273.15 = 303.15 K)
Now take the formula and solve for V, then substitute the known values and solve.
PV = nRT
V = nRT/P
V = 0.005386274 mol * 0.082057338 L*atm/(K*mol) * 303.15 K / 1.0 atm
V = 0.000441983 L*atm/(K*) * 303.15 K / 1.0 atm
V = 0.133987239 L*atm / 1.0 atm
V = 0.133987239 L
So the volume (rounded to 3 significant figures) will be 134 ml.</span>