Answer:
The amount of mass and matter in all the transformations of the clay ball will remain the same or constant
Explanation:
From the law of conservation of mass we have, for an enclosed system to and from which there is no transfer of matter or energy, mass cannot be created nor destroyed, and remains constant at the given value, but the matter which make up the mass can be changed into different forms
Therefore, the clay ball can be transformed into different shapes and will still posses the same initial mass before the transformation, provided there are no transfer of matter or energy from the clay ball system.
Answer:
Los habitantes del planeta con una atmósfera superior a 5,1 atm de la Tierra, no estarían nadando en ríos de dióxido de carbono líquido
Explanation:
De las tablas de datos termodinámicos, la presión a la que el vapor de dióxido de carbono está en equilibrio con su estado líquido a una temperatura ambiente de 25 ° C es 6,401 kPa, lo que equivale a 63,17296 atm.
Por lo tanto, a una presión de 5.1 de la atmósfera terrestre, el dióxido de carbono es completamente gaseoso y los habitantes del planeta con una presión atmosférica de 5.1 atm de la Tierra todavía observarían solo hidrógeno gaseoso y no estarían nadando en ríos de dióxido de carbono líquido.
Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
Answer:
There are two kinds of forces, or attractions, that operate in a molecule—intramolecular and intermolecular. Let's try to understand this difference through the following example.
Explanation:
We have six towels—three are purple in color, labeled hydrogen and three are pink in color, labeled chlorine. We are given a sewing needle and black thread to sew one hydrogen towel to one chlorine towel. After sewing, we now have three pairs of towels: hydrogen sewed to chlorine. The next step is to attach these three pairs of towels to each other. For this we use Velcro as shown above.
So, the result of this exercise is that we have six towels attached to each other through thread and Velcro. Now if I ask you to pull this assembly from both ends, what do you think will happen? The Velcro junctions will fall apart while the sewed junctions will stay as is. The attachment created by Velcro is much weaker than the attachment created by the thread that we used to sew the pairs of towels together. A slight force applied to either end of the towels can easily bring apart the Velcro junctions without tearing apart the sewed junctions.
Exactly the same situation exists in molecules. Just imagine the towels to be real atoms, such as hydrogen and chlorine. These two atoms are bound to each other through a polar covalent bond—analogous to the thread. Each hydrogen chloride molecule in turn is bonded to the neighboring hydrogen chloride molecule through a dipole-dipole attraction—analogous to Velcro. We’ll talk about dipole-dipole interactions in detail a bit later. The polar covalent bond is much stronger in strength than the dipole-dipole interaction. The former is termed an intramolecular attraction while the latter is termed an intermolecular attraction.
For first answer A and second answer A and third answer isA