Answer:
THE VOLUME OF THE NITROGEN GAS AT 2.5 MOLES , 1.75 ATM AND 475 K IS 55.64 L
Explanation:
Using the ideal gas equation
PV = nRT
P = 1.75 atm
n = 2.5 moles
T = 475 K
R = 0.082 L atm/mol K
V = unknown
Substituting the variables into the equation we have:
V = nRT / P
V = 2.5 * 0.082 * 475 / 1.75
V = 97.375 / 1.75
V = 55.64 L
The volume of the 2.5 moles of nitrogen gas exerted by 1.75 atm at 475 K is 55.64 L
- Get 3 cups of water at the exact same temperature, using the thermometer to check.
- Label the cups as ‘whole’, ‘pieces’, and ‘crushed’
- Next, get something to dissolve, in this case, polident. Take one of the polident tablets and break it into 4 pieces, and set it aside.
- Take another polident tablet and this time put it into a different cup, and crush it. Set it aside.
- Keep the last tablet whole.
- Set up your stopwatch and drop the polident tablet that is whole in the cup labeled ‘whole’, starting the stopwatch at the same time.
- Watch the cup and see when the tablet is fully dissolved, then stop the stopwatch.
- Record the time in the table.
- Repeat steps 6-8 for both the ‘pieces’ and ‘crushed’ tablets.
Hope this helps! Please let me know if you need more help, or if you think my answer is incorrect. Brainliest would be MUCH appreciated. Have a great day!
Stay Brainy!
−
Complete Question
The complete question is shown on the first uploaded image
Answer:
The solution to this question is shown on the second uploaded image
Explanation:
Answer: 2 mol
Explanation:
- According to the ideal gas law, One mole of an ideal gas at STP (standard temperature and normal pressure) occupies 22.4 liters.
- Using cross multiplication,
1 mol of (O2) → 22.4 L
? → 43.9 L
Therefore, the number of moles of oxygen in 43.9 L = (43.9 × 1)/ 22.4 = 1.96 mol≈ 2 mol..