A kilogram is a measure of mass; 1,000 grams
The boiling point of the fluid depends on the intermolecular forces between the fluid atoms and molécules, as these forces must be disrupted to switch from a fluid to a gas. The stronger the intermolecular forces, the greater the point of boiling.
Answer:
5746.0 mL.
Explanation:
We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 6193.0 mL, T₁ = 62.3°C + 273 = 335.3 K.
V₂ = ??? mL, T₂ = 38.1°C + 273 = 311.1 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (6193.0 mL)(311.1 K)/(335.3 K) = <em>5746.0 mL.</em>
<span>4: Form An Aqueous Solution
This is the only answer that can be observed without testing gear and with the naked eye.... Hope I helped ^-^</span>
Answer:
B
Explanation:
B. There are two atoms of Nitrogen and two atoms of Hydrogen combined to make Ammonia.