This question comes with four answer choices:
<span>A. H2O + H2O ⇄ 2H2 + O2
B. H2O + H2O⇄ H2O2 + H2
C. H2O + H2O ⇄ 4H+ + 2O2-
D. H2O + H2O ⇄ H3O+ + OH-
Answer: option </span><span>D. H2O + H2O ⇄ H3O+ + OH-
(the +sign next to H3O is a superscript, as well as the - sing next to OH)
Explanation:
The self-ionization of water, or autodissociation, produces the two ions H3O(+) and OH(-). The presence of ions is what explain the electrical conductivity of pure water.
</span><span>In this, one molecule of H2O loses a proton (H+) (deprotonates) to become a hydroxide ion, OH−. Then, he <span>hydrogen ion, H+</span>, immediately protonates another water molecule to form hydronium, H3O+.
</span>
Because their atoms and molecules are held together firmly by the strong inter molecular forces
Answer:
a) AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Explanation:
a) AgNO3 + KI → Ag+ + NO3- + K+ + I-
Ag+ + NO3- + K+ + I- → AgI + KNO3
AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba^2+ + 2OH- + 2H+ + 2NO3-
Ba^2+ + 2OH- + 2H+ + 2NO3- → Ba(NO3)2 + 2H2O
Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → 6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3-
6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3- → Ni3(PO4)2 + 6NaNO3
2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → 2Al^3+ + 6OH- + 6H+ + 3SO4^2-
2Al^3+ + 3OH- + 3H+ + 3SO4^2- → Al2(SO4)3 + 6H2O
2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Answer:
40 g
Explanation:
Find the line labeled KClO3 (which might take you a min, theres a lot of lines here)
Notice that when the line creates a direct point, you can measure the exact temperature needed to dissolve a certain amount (like how they gave 30 degrees and it lined up perfectly with the 10 g line. )
Since its asking for the amount at 80 degrees, all you need to do is trace the line to the 80 degree point, and look at the grams. (notice it made a direct point, so there definitely should be any decimals or guesswork)
By reading the graph, you can tell that at 80 degrees, it dissolves 40 grams, and that is your answer.
Hope this helps :)
Answer:
The elements in Group 2 (beryllium, magnesium, calcium, strontium, barium, and radium) are called the alkaline earth metals (see Figure below). These elements have two valence electrons, both of which reside in the outermost s sublevel. The general electron configuration of all alkaline earth metals is ns