Answer:
1. 2.67 s
2. 0.1 m/s²
Explanation:
1. Determination of the time taken for the penguin to fall.
Height (h) of cliff = 35 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
35 = ½ × 9.8 × t²
35 = 4.9 × t²
Divide both side by 4.9
t² = 35 / 4.9
Take the square root of both side
t = √(35 / 4.9)
t = 2.67 s
Thus, it will take 2.67 s for the penguin to fall onto the head of a napping polar bear.
2. Determination of the acceleration of the penguin.
Initial velocity (u) = 0 m/s.
Final velocity (v) = 2 m/s.
Time (t) = 20 s
Acceleration (a) =?
a = (v – u)/t
a = (2 – 0)/ 20
a = 2 / 20
a = 0.1 m/s²
Thus, the acceleration of the penguin is 0.1 m/s²
Answer:
The force becomes 16 times what it is now.
Explanation:
The formula for gravitational force is
F = G * m1 * m2 / r^2
When you do what you have described, you are setting a stage that not even the USS Enterprise (Star Trek) can get out of. The increase is huge.
If you double m1 and m2 and don't do anything to r, you've already increased the force by 4 times. (2m1 * 2m2 = 4 * m1 * m2)
But you are not finished. If you 1/2 the distance, you are again increasing the Force by 4 times. 1 / (2r) ^2 = 1/ 4* r^2
Because this is in the denominator, the 1/4 is going to flip to the numerator.
So the total increase is going to be 4 * (4 * m1 * m2) = 16 * m1 * m2.
Think about what that means. If you were out golfing, your drives would be roughly 1/16 times as far as they are now. Also you would be lugging around 16 times your weight around the golf course. My feeling is that you would never finish 5 holes at that rate.
If I'm not mistaken it should be the digestive system due to the fact that our mouths and stomachs break down food and our intestines absorb any water and nutrients
It makes no difference. The momentum of either car goes to zero in both cases.