Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm
Answer:
I believe it's the lowest portion of the atmosphere
<span>Carbon dioxide CO2 and water H2O. Through photosynthesis makes sugar C6H12O6.</span>
Answer:
-3.7771 × 10² kJ/mol
Explanation:
Let's consider the following equation.
3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)
We can calculate the standard Gibbs free energy (ΔG°) using the following expression.
ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)
where,
n: moles
ΔG°f(): standard Gibbs free energy of formation
p: products
r: reactants
ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))
ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)
ΔG° = -377.71 kJ = -3.7771 × 10² kJ
This is the standard Gibbs free energy per mole of reaction.