Heya user☺☺
All options are wrong here.
The correct answer is..
Work/Time.
Hope this will help☺☺
Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m
Answer:

Explanation:
For this case we have the following info given:
Number of Na+ ions 
Each ion have a charge of +e and the crage of the electron is 
The time is given
if we convert this into seconds we got:

Now we can use the following formula given from the current passing thourhg a meter of nerve axon given by:

Where N represent the number of ions, e the charge of the electron and Q the total charge
If we replace on this case we have this:

And from the general definition of current we know that:

And since we know the total charge Q and the time we can replace:

The current during the inflow charge in the meter axon for this case is 