Answer:
0.96 m
Explanation:
First, convert km/h to m/s.
162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s
Now find the time it takes to move 20 m horizontally.
Δx = v₀ t + ½ at²
20 m = (45.08 m/s) t + ½ (0 m/s²) t²
t = 0.4436 s
Finally, find how far the ball falls in that time.
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²
Δy = -0.96 m
The ball will have fallen 0.96 meters.
Answer:
A. Is the one that the experimenter manipulates directly
Explanation:
The independent variable is the one that is manipulated during an experiment by the experimenter.
The dependent variable is the one that is effected by the independent variable in an experiment.
Answer:
Explanation:
Let the extension in the spring be x .
restoring force = weight of block
kx = mg
x = 
= 23.84 cm
b )
When the elevator is going upwards
Restoring force = mg + ma
k x₁ = 10.9 ( 9.8 + 1.89 )
x₁ = 28.44 cm
( y coordinate will be - ( 28.44 - 23.84 ) = - 4.6 cm )
c ) When the cable snaps , both elevator and block undergo free fall . In this case apparent g = 0
Since the spring is stretched by 28.44 cm , a restoring force continues to act on the block which is equal to
.2844 x 448
= 127.41 N
So a net acceleration a will act on the block
a = 127.41 / 10.9
= 11.68 m / s²
The block will undergo SHM with amplitude equal to 28.44 cm .
Answer:
Sound waves enter the outer ear and travel through a narrow passageway called the ear canal, which leads to the eardrum. The eardrum vibrates from the incoming sound waves and sends these vibrations to three tiny bones in the middle ear.