First we need to find k ( rate of growth)
The formula is
A=p e^kt
A future bacteria 4800
P current bacteria 4000
E constant
K rate of growth?
T time 5 hours
Plug in the formula
4800=4000 e^5k
Solve for k
4800/4000=e^5k
Take the log for both sides
Log (4800/4000)=5k×log (e)
5k=log (4800/4000)÷log (e)
K=(log(4,800÷4,000)÷log(e))÷5
k=0.03646
Now use the formula again to find how bacteria will be present after 15 Hours
A=p e^kt
A ?
P 4000
K 0.03646
E constant
T 15 hours
Plug in the formula
A=4,000×e^(0.03646×15)
A=6,911.55 round your answer to get 6912 bacteria will be present after 15 Hours
Hope it helps!
Answer:
I know u saw me before but the answer is B hope it helps! =)
Answer:
c is the answer
Step-by-step explanation:
It is the only graph that starts at (1,0)
and if you look closely the slope is 3
In this equation, you have to treat the number in the bracket first on the basis of BODMAS
15 - [-3]- 4
Note that when two minuses come together the product is a plus sign.
15 +3 - 4
You have to add before you subract
18 - 4 =14
Therefore, 15- [-3] - 4 = 14.