If the temperature is increased then reaction will shift to the left because heat is absorbed.
<h3>What is equilibrium state?</h3>
Equilibrium of any reaction is that state in which concentration of reactant and concentration of product will be constant.
Given chemical reaction is:
A(g) + 2B(g) ⇄ C(g) + D(g)
From the equilibrium state reaction will move only that side which will contribute to maintain the stable state. In the forward reaction heat is released as mention in the question. So, when the temperature of reaction is increased then it shifts towards the left side by absorbing the heat and maintain the stability.
Hence, option (2) is correct, i.e. It will shift to the left because heat is absorbed.
To know more about equilibrium, visit the below link:
brainly.com/question/14297698
Answer:
it would be colder on the mountains becouse there is less air up there and it would be a lot more humid down by the ocean
Explanation:
The correct answer is C: the alkaline earth metals!
Metallic bonding
The particles in a metal are held together by metallic bonds.
High melting and boiling points
Metallic bonds are strong and a lot of energy is needed to break them. This is why metals have high melting points and boiling points.
Conducting electricity
Metals contain electrons that are free to move in the metal structure, carrying charge from place to place and allowing metals to conduct electricity well.
Metallic bonding - Higher tier
Metallic bonding is the strong attraction between closely packed positive metal ions and a 'sea' of delocalised electrons.
Answer:
0.18 mol
Explanation:
Given data
- Mass of carbon tetrachloride (solvent): 750 g
- Molality of the solution: 0.24 m
- Moles of iodine (solute): ?
Step 1: Convert the mass of the solvent to kilograms
We will use the relationship 1 kg = 1,000 g.

Step 2: Calculate the moles of the solute
The molality is equal to the moles of solute divided by the kilograms of solvent. Then,
