1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gladu [14]
3 years ago
12

Can someone help me :(​

Physics
1 answer:
Aliun [14]3 years ago
6 0

Answer:

1. This is a speed graph.

2. The slope represents how much the item/ thing is moving at how much distance it moved and the minutes it takes it too move how much distance, but the slope is representing the decrease and increase of it.

3. Increasing, kind of rapidly going up since the slope is rising not falling.

You might be interested in
A rubber ball with a mass of 0.145 kg is dropped from rest. From what height (in m) was the ball dropped, if the magnitude of th
Elena-2011 [213]

Answer:

1.55 m

Explanation:

Momentum: This can be defined as the product of  mass of a body and it velocity. the S.I unit of momentum is kgm/s.

Mathematically,

Momentum can be represented as,

M = mv................................. Equation 1

Where m = mass of the body, v = velocity of the body, M = momentum.

Making v the subject of the equation,

v = M/m........................................... Equation 2

Given: M = 0.80 kg.m/s, m = 0.145 kg.

Substituting into equation 2,

v = 0.8/0.145

v = 5.52 m/s.

Using the equation of motion,

v² = u² + 2gs ....................... Equation 3.

Where v = final velocity of the rubber ball, u = initial velocity of the rubber ball, s = distance, g = acceleration due to gravity.

Given: v = 5.52 m/s, u = 0 m/s, g = 9.81 m/s².

Substituting into equation 2

5.52² = 0² + 2(9.81)s

30.47 = 19.62s

s = 30.47/19.62

s = 1.55 m.

Thus the ball was dropped from a height of 1.55 m

8 0
4 years ago
Write the differential equation that governs the motion of the damped mass-spring system, and find the solution that satisfies t
melisa1 [442]

This question is incomplete, the complete question  is;

Write the differential equation that governs the motion of the damped mass-spring system, and find the solution that satisfies the initial conditions specified. Units are mks; γ is the damping coefficient, with units of kg/sec

m = 0.2, γ = 1.6 and k = 4

Initial displacement is 1 and initial velocity is -2

x" + _____ x' ____x = 0

x(t) =

Answer:

the solution that satisfies the initial conditions specified is;

x(t) = c_1e^{-4t}cos(2t) + c_2e^{-4t}sin(2t)

Explanation:

Given the data in the question ;

m = 0.2, γ = 1.6, k = 4

x(0) = 1, x'(0) = -2

Now, the differential equation that governs the motions of spring mass system is;

mx" + γx' + kx = 0

so we substitute

0.2x" + 1.6x' + 4x = 0

divide through by 0.2

x" + 8x' + 20x = 0

hence, characteristics equation will be;

m² + 8m + 20 = 0

we find m using; x = [ -b±√(b² - 4ac) ] / 2a

m = [ -8 ± √((8)² - 4(1 × 20 )) ] / 2(1)

m = [ -8 ± √( 64 - 80 ) ] / 2

m = [ -8 ± √-16 ) ] / 2

m = ( -8 ± 4i ) / 2

m = -4 ± 2i

Hence, the general solution of the differential equation is;

x(t) = c_1e^{-4t}cos(2t) + c_2e^{-4t}sin(2t)

From the initial conditions;

c₁ = 1, c₂ = 1

the solution that satisfies the initial conditions specified is;

x(t) = c_1e^{-4t}cos(2t) + c_2e^{-4t}sin(2t)

6 0
3 years ago
High and low tides are the regular pattern of rising and sinking ocean-water levels. They are caused when the sun's gravity and
MrRa [10]

Answer:

D. The moon is closer to Earth than the sun.

Explanation:

Tides are formed as a consequence of the differentiation of gravity due to the moon across to the Earth sphere.

Since gravity variate with the distance:

   

F = G\frac{m1\cdot m2}{r^{2}}  (1)                            

Where m1 and m2 are the masses of the two objects that are interacting and r is the distance

For example, see the image below, point A is closer to the moon than point b and at the same time the center of mass of the Earth will feel more attracted to the moon than point B. Therefore, that creates a tidal bulge in point A and point B.

The Sun tidal force contributes to the tidal force of the moon over the earth making high tides higher and low tides lower.  

However, even when the sun is more massive than the moon, it is farther away from the Earth than the moon. So, it is clear by equation 1 that the moon's gravity has a greater effect on Earth's oceans than the sun's gravity.         

8 0
3 years ago
PLEASE HELP ASAP!!!!!!!!!!!!!!!!!!
Bond [772]

Answer:

The answer is A) byee!!

Explanation:

4 0
3 years ago
A 1.34 kg ball is connected by means of two massless strings, each of length L = 1.70m, to a vertical, rotating rod. The strings
Dennis_Churaev [7]
I think it’s B I’m so right
3 0
3 years ago
Other questions:
  • A pendulum of 50 cm long consists of small ball of 2kg starts swinging down from height of 45cm at rest. the ball swings down an
    5·1 answer
  • PLEASE HELP BRAINLIEST ANSWER
    8·1 answer
  • You are attempting to row across a stream in your rowboat. Your paddling speed relative to still water is 3.0 m/s (i.e., if you
    5·1 answer
  • A resistor is connected across an oscillating emf. The peak current through the resistor is 2.0 A. What is the peak current if:
    5·1 answer
  • How do astronomers think the sun may have begun
    5·2 answers
  • A cat rides a merry-go-round while turning with uniform circular motion. At time t1 = 2.00 s, the cat's velocity is v with arrow
    5·1 answer
  • A boy on a bus traveling 120 km/h has a foot-long sandwich in his backpack. When the boy gets off at the bus stop,
    14·1 answer
  • Two point charges +3 micro coulomb and +8 micro coulomb repel each other with a force of 40N . If a charge of -5 micro coulomb i
    13·1 answer
  • A ship tows a submerged cylinder, which is 1.5 m in diameter and 22 m long, at 5 m/s in fresh water at 208C. Estimate the towing
    13·2 answers
  • The age and crisis of the stage trust vs. mistrust
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!