Answer:
the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Explanation:
The computation of the magnitude of the each force is shown below:
Provided that
Ratio of forces = 3: 5
Let us assume the common factor is x
Now
first force = 3x
And, the second force = 5x
Resultant force = 35 N
The Angle between the forces = 60 degrees
Based on the above information
Resultant force i.e. F = √ F_1^2 +F_2^2 + 2 F_1F_2cos
35 = √[(3x)²+ (5x)²+ 2 (3x)(5x) cos 60°]
35 =√ 9x² + 25x² + 15x² (cos 60° = 0.5)
35 = √49 x²
x = 5
So, the magnitude of first force = 3 × 5= 15 N
ANd, the magnitude of second force = 5 × 5 = 25 N
Answer:
Explanation:
Mechanical Advantage is the ratio of the distance of the input load (Li)from the pivot to the output load applied to the pivot(Lo)
MA = Li/Le
Given;
Li = 45cm
Lo = 1.8cm
MA = 45/1.8
MA = 25
Hence the mechanical advantage is 25
Also MA is expressed in terms of the force ratio which is the ratio of the Load to the effort applied.
MA = Load/Effort
Given
Load = 1250N
MA = 25
Effort = ?
Substitute
25 = 1250/Effort
Effort = 1250/25
Effort = 50N
Hence the minimum force exerted on the load is 50N
Answer and Explanation:
the electronic devices always have some noises present in the signal
there are some important considerations in optical fiber communications these are.
- the noise which is contributed by transmitter are electronic random noise, low frequency noise
- noise which is contributed by laser are relative intensity noise, mode partition noise, conversion of phase noise to amplitude noise.
- noise contributed by photo detector are quantum shot noise, shot noise from dark current, avalanche multiplication noise.
PRINCIPLE OF POPULATION INVERSION :
The principle of population inversion is defined as for production of high percentage of simulated emission for a laser beam the number of atoms in higher state should be greater than lower energy state
Answer:
A. Vx = 3.63 m/s
B. Vy = -45.73 m/s
C. |V| = 45.87 m/s
D. θ = -85.46°
Explanation:
Given that position, r, is given as:
r = 3.63tˆi − 5.73t^2ˆj + 8.16ˆk
Velocity is the derivative of position, r:
V = dr/dt = 3.63 - 11.46t^j
A. x component of velocity, Vx = 3.63 m/s
B. y component of velocity, Vy = -11.46t
t = 3.99 secs,
Vy = - 11.46 * 3.99 = -45.73 m/s
C. Magnitude of velocity, |V| = √[(-45.73)² + 3.63²]
|V| = √(2091.2329 + 13.1769)
|V| = √(2104.4098)
|V| = 45.87 m/s
D. Angle of the velocity relative to the x axis, θ is given as:
tanθ = Vy/Vx
tanθ = -45.73/3.63
tanθ = -12.6
θ = -85.46°