Answer:
The phase constant is 7.25 degree
Explanation:
given data
mass = 265 g
frequency = 3.40 Hz
time t = 0 s
x = 6.20 cm
vx = - 35.0 cm/s
solution
as phase constant is express as
y = A cosФ ..............1
here A is amplitude that is =
=
= 6.25 cm
put value in equation 1
6.20 = 6.25 cosФ
cosФ = 0.992
Ф = 7.25 degree
so the phase constant is 7.25 degree
A) 50 cm
B) 10000 cm/s
Explanation
Step 1
A)
If you know the distance between nodes and antinodes then use this equation:

then, let

now, replace to find the wavelength

so, the wavelength is
A) 50 cm
Step 2
The speed of a wave can be found using the equation

or velocity = wavelength x frequency,
then,let

replace and evaluate

so
B) 10000 cm/s
I hope this helps you
Answer:
The correct answer is a
Explanation:
At projectile launch speeds are
X axis vₓ = v₀ = cte
Y axis
= v_{oy} –gt
The moment is defined as
p = mv
For the x axis
pₓ = mvₓ = m v₀ₓ
As the speed is constant the moment is constant
For the y axis
p_{y} = m v_{y} = m (v_{oy} –gt) = m v_{oy} - m (gt)
Speed changes over time, so the moment also changes over time
Let's examine the answer
i True
ii False. The moment changes with time
The correct answer is a
Answer:
Explanation:
(a) It is given that Joseph jogs on a straight road of 300m in a time interval of 2 minutes and 30 seconds, which is equal to 150seconds. Therefore, when Joseph jogs from point A to point B, he covers a distance of 300m in time of 150seconds. Hence, his average speed is 300m/150s=2ms^−1. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m.
Hence, his average velocity is 300m/150s=2ms^−1
(b) Then it is given that he turns back and points B and jogs on the same road but in the opposite direction for a time interval for 1 minute and covers a distance of 100m.If we consider the whole motion of Joseph, i.e. from point A to point C, then he covers a total distance of 300m+100m=400m. And he covers this total distance in a time interval of 2.5min+1min=3.5min=210s.
Therefore, his average speed for this journey is 400m210s=1.9ms−1.
For the same journey is displacement is equal to the distance between the points A and C,i.e. 300m−100m=200m.
Hence, his average velocity for this case is 200m/210s=0.95ms^−1
Because sound waves don't travel through the vaccume of space. Hope this helped