Answer:
The voltage across the capacitor is 1.57 V.
Explanation:
Given that,
Number of turns = 10
Diameter = 1.0 cm
Resistance = 0.50 Ω
Capacitor = 1.0μ F
Magnetic field = 1.0 mT
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the induced emf
Using formula of induced emf

Put the value into the formula

Put the value of emf from ohm's law





We know that,


We need to calculate the voltage across the capacitor
Using formula of charge


Put the value into the formula


Hence, The voltage across the capacitor is 1.57 V.
Answer:
Explanation:
There is electric field between the plates whose value is given by the following expression
electric field E = V /d where V is potential between the plates and d is distance between them
E = 300 / 5 x 10⁻³
= 60 x 10³ N/c
Force on electron = q E where q is charge on the electron
F = 1.6 X 10⁻¹⁹ X 60 X 10³ = 96 X 10⁻¹⁶ N.
Acceleration a = force / mass
a = 96 x 10⁻¹⁶/ mass = 96 x 10⁻¹⁶ / 9.1 x 10⁻³¹
= 10.55 x 10¹⁵ m / s²
For midway , distance travelled
s = 2.5 x 10⁻³ m
s = 1\2 a t²
t = 
= 
t = .474 x 10⁻¹⁸ s
For striking the plate time is calculated as follows
t =
[/tex]
t = 0.67 x 10⁻¹⁸ s
I know for a fact the answer is D. the distance traveled by the wave during one full cycle
1) The correct answer is
<span>C) The particles are not able to move out of their positions relative to one another, but do have small vibrational movements.
In solids, in fact, particles are bound together so they cannot move freely. However, they can move around their fixed position with small vibrational movements, whose intensity depends on the temperature of the substance (the higher the temperature, the more intense the vibrations). For this reason, we say that matter moves also in solid state.
2) The correct answer is
</span><span>A) increase the concentration of both solutions
In fact, when we increase the concentration of both solutions, we increase the number of particles that react in both solutions; as a result, the speed of the reaction will increase.
3) The correct answer is
</span><span>C) gas → liquid → solid
In gases, in fact, particles are basically free to move, so the intermolecular forces of attraction are almost negligible. In liquids, particles are still able to move, however the intermolecular forces of attraction are stronger than in gases. Finally, in solids, particles are bound together, so they are not free to move and the intermolecular forces of attraction are very strong. </span>
A if it is one answer and if it’s multiple choice A and D