Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
Explanation:
As the given data is as follows.
ohm
,
ohm,
= 1200
(as 1 k ohm = 1000 m)
(a) We will calculate the maximum resistance by combining the given resistances as follows.
Max. Resistance = 
=
ohm
= 2600 ohm
or, = 2.6
ohm
Therefore, the maximum resistance you can obtain by combining these is 2.6
ohm.
(b) Now, the minimum resistance is calculated as follows.
Min. Resistance = 
= 
=
ohm
Hence, we can conclude that minimum resistance you can obtain by combining these is
ohm.