The magnitude of maximum magnetic force that could be exerted on the proton is 1.44 x 10^-12 N.
The magnitude of the force on a charged particle moving in a magnetic field is given by the formula,
F= qvB
Here q is the charge on proton = 1.6 x 10^-19 C.
v is the velocity with which the particle is moving = 6.00 x 10^6 m/s
And B is the value of the magnetic field = 1.5 T
Putting the given values in the above equation,
F = 1.6 x 10^-19 x 6 x 10^6 x 1.5 = 1.44 x 10^-12 N.
Hence, the magnitude of maximum magnetic force that could be exerted on the proton is 1.44 x 10^-12 N.
To know more about "magnetic force", refer to the link given below:
brainly.com/question/13791875?referrer=searchResults
#SPJ4
Actually moving and not. It is the sum of potential and kinetic energy.
Answer:
True
Explanation:
When a ray travelling parallel to the principle axis of a concave mirror then the light ray reflect out through the mirrors and passing through the focus.
When a light ray travelling through focus of a concave mirror then after reflection the light ray reflect out through the mirror and go parallel to principle axis.
Therefore, rays travelling parallel to the principle axis of a concave mirror will reflect out through the mirrors focus.
It is true.