Answer:
ΔH = -20kJ
Explanation:
The enthalpy of formation of a compound is defined as the change of enthalpy during the formation of 1 mole of the substance from its constituent elements. For H₂S(g) the reaction that describes this process is:
H₂(g) + S(g) → H₂S(g)
Using Hess's law, it is possible to sum the enthalpies of several reactions to obtain the change in enthalpy of a particular reaction thus:
<em>(1) </em>H₂S(g) + ³/₂O₂(g) → SO₂(g) + H₂O(g) ΔH = -519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
The sum of -(1) + (2) + (3) gives:
<em>-(1) </em>SO₂(g) + H₂O(g) → H₂S(g) + ³/₂O₂(g) ΔH = +519 kJ
<em>(2) </em>H₂(g) + ¹/₂O₂(g) → H₂O(g) ΔH = -242 kJ
<em>(3) </em>S(g) + O₂(g) → SO₂(g) ΔH = -297 kJ
<em>-(1) + (2) + (3): </em><em>H₂(g) + S(g) → H₂S(g) </em>
<em>ΔH =</em> +519kJ - 242kJ - 297kJ = <em>-20 kJ</em>
<em />
I hope it helps!
<u>Given:</u>
Mass of calcium nitrate (Ca(NO3)2) = 96.1 g
<u>To determine:</u>
Theoretical yield of calcium phosphate, Ca3(PO4)2
<u>Explanation:</u>
Balanced Chemical reaction-
3Ca(NO3)2 + 2Na3PO4 → 6NaNO3 + Ca3(PO4)2
Based on the reaction stoichiometry:
3 moles of Ca(NO3)2 produces 1 mole of Ca3(PO4)2
Now,
Given mass of Ca(NO3)2 = 96.1 g
Molar mass of Ca(NO3)2 = 164 g/mol
# moles of ca(NO3)2 = 96.1/164 = 0.5859 moles
Therefore, # moles of Ca3(PO4)2 produced = 0.0589 * 1/3 = 0.0196 moles
Molar mass of Ca3(PO4)2 = 310 g/mol
Mass of Ca3(PO4)2 produced = 0.0196 * 310 = 6.076 g
Ans: Theoretical yield of Ca3(PO4)2 = 6.08 g
number 8 the list is hydrogen,magnesium,silicon and oxygen and there are 4elements
The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au
Answer:
182.156g
Explanation:
grams = 49/.269 = 182.156g needed