16 protons
Explanation: S2-: proton number 16; nucleon number 32
There are 16 protons (from the proton number). If it was a neutral atom, there would be 16 electrons.
It helps to map out how you will navigate through your unit analysis problem before setting it up.
You are given moles and need grams. What can be used as a conversion factor from moles to grams? Molar mass. We are working with aluminum, so we will need the molar mass of aluminum. My Periodic Table tells me the molar mass of aluminum is approximately 27 g/mol. Now we are ready to set up the unit analysis.

Moles must go on the bottom so that they cancel. Notice how our number of significant figures is 2, so the answer must round to 16 g Al.
<h3>
Answer:</h3>
16 grams
The deltaHrxn = -243 kJ/mol the deltaHrxn of CH4(methane) = -802 kJ/mol
The fuel that yields more energy per mole is METHANE. The negative sign merely signifies the release of energy. Thus, 802 kJ/mol is greater than 243 kJ/mol.
The fuel that yields more energy per gram is HYDROGEN. Here is the computation:
deltaHrxn = (-243 kJ/mol)(1 mol/2.016 g H2) <span>= -120.535714286 kJ/g or -121 kJ/g
</span>deltaHrxn of CH4(methane) = (-802 kJ/mol)(1 mol/16.04 g)
<span>= -50 kJ/g
</span>
As discussed the negative sign serves as the symbol of released energy. Thus, 121 is greater than 50.
<u>Answer:</u> The concentration of
ions are 2.797 ppm and 0.212 ppm respectively.
<u>Explanation:</u>
To calculate the mass of solution, we use the equation:

Volume of gold = 100 L = 100000 mL (Conversion factor: 1 L = 1000 mL)
Density of gold = 1.001 g/mL
Putting values in above equation, we get:

To calculate the concentration in ppm (by mass), we use the equation:

- <u>Calculating the concentration of calcium ions:</u>
Mass of
ions = 0.280 g
Putting values in above equation, we get:

- <u>Calculating the concentration of magnesium ions:</u>
Mass of
ions = 0.0220 g
Putting values in above equation, we get:

Hence, the concentration of
ions are 2.797 ppm and 0.212 ppm respectively.