The pressure would increase. When the temperature change form cold to hot, the gas will find ways to escape from containment. Thus, if it cannot escape that pressure will keep on increasing as the temperature rises.
NaBrO3 is the chemical formula for Sodium Bromate.
Answer:
Explanation:
The process of gaining or losing electrons from a neutral atom or molecule is called ionization. Atoms can be ionized by bombardment with radiation, but the more purely chemical process of ionization is the transfer of electrons between atoms or molecules
<em>Answer :</em> 72.05 g/mol
<span>
<em>Explanation : </em>
Let's </span>assume that the given gas is an ideal gas. Then we can use ideal gas equation,<span>
PV = nRT<span>
</span>
Where,
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the gas </span></span>is,<span>
P = 777 torr = 103591 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³<span>
T = (</span>126 + 273<span>) = 399 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
103591 Pa x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 399 K<span>
n = 3.90 x 10</span>⁻³<span> mol
</span>Moles (mol) = mass (g) /
molar mass (g/mol)<span>
Mass of the gas = </span><span>0.281 g
</span>Moles of the gas = 3.90 x 10⁻³ mol
<span>Hence,
molar mass of the gas = mass / moles
= 0.281 g / </span>3.90 x 10⁻³ mol
<span> = 72.05 g/mol
</span>
Answer:
<h2>Density = 0.46 g/mL</h2>
Explanation:
Density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass = 5.52 g
volume = 12 mL
Substitute the values into the above formula and solve for the Density
That's
<h3>

</h3>
We have the final answer as
<h3>Density = 0.46 g/mL</h3>
Hope this helps you