Answer:
P(made 2nd attempt|made 1st attempt)=P(made 2nd attempt)
Step-by-step explanation:
Here given that a basketball player that shoots 80% from the free throw line attempts two free throws.
If x is the no of shoots he makes (say) then we find that each throw is independent of the other.
In other words, because he made successful first attempt, his chances for second attempt will not change
Prob for success in each attempt remains the same as 0.80
Hence I throw is independent of II throw.
When A and B are independent,then we have
P(A/B) = P(A)
Hence answer is
P(made 2nd attempt|made 1st attempt)=P(made 2nd attempt)
Answer:
Common denominator is 15
Step-by-step explanation:
Answer:
a. The value of the constant k is 21
b. The equation is y = k * x, where k is the proportionality constant, "x" is the number of terraced houses and "y" is the width of a row of identical houses.
Step-by-step explanation:
a.
<em>A proportional relationship satisfies the equation y = k * x, where k is a positive constant and is called a proportionality constant. In this case "x" is the number of terraced houses and "y" is the width of a row of identical houses.
</em>
The data you have is that the width of 5 townhouses are 105 feet. This means that the value of "x" is 5 houses and the value of "y" is 105 feet. By replacing in the equation y = k * x and isolating the constant k, you get:
<em>105=k*5
</em>

<em>k=21
</em>
<u><em>So the value of the constant k is 21.</em></u>
b.
<em>As mentioned, the equation is y = k * x, where k is the proportionality constant, "x" is the number of terraced houses and "y" is the width of a row of identical houses.</em>
This means that just as "x" increases, "y" increases. And that if "x" decreases, "y" will decrease. And this relationship between "x" e "and" will always be the same, determined by the value of the constant "k".
Answer:

Step-by-step explanation:
Given


Required
Determine the regular price (R)
From the question, we understand that:

So, we have:



<em>Hence, the regular price is $903.125</em>
4/3 = AD/EH (similarity)
hence, AD= EH*4/3=60*4/3=80
so, 80